Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results ...Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results demonstrate that biases in the range 1.62 to 1.98V influence DSET current shape greatly and total collected charge weakly. Peak current and charge collection within 2ns decreases as temperature increases,and temperature has a stronger influence on SET currents than on total charge. Typical variation of substrate concentration in modern VDSM processes has a negligible effect on SEEs. Both peak current and total collection charge increases as LET increases.展开更多
In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure f...In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure free space optical communication展开更多
文摘Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results demonstrate that biases in the range 1.62 to 1.98V influence DSET current shape greatly and total collected charge weakly. Peak current and charge collection within 2ns decreases as temperature increases,and temperature has a stronger influence on SET currents than on total charge. Typical variation of substrate concentration in modern VDSM processes has a negligible effect on SEEs. Both peak current and total collection charge increases as LET increases.
文摘In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure free space optical communication