In recent years,three-dimensional topological insulators(3DTI) as a novel state of quantum matter have become a hot topic in the fields of condensed matter physics and materials sciences.To fulfill many spectacularly ...In recent years,three-dimensional topological insulators(3DTI) as a novel state of quantum matter have become a hot topic in the fields of condensed matter physics and materials sciences.To fulfill many spectacularly novel quantum phenomena predicted in 3DTI,real host materials are of crucial importance.In this review paper,we first introduce general methods of searching for new 3DTI based on the density-functional theory.Then,we review the recent progress on materials realization of 3DTI including simple elements,binary compounds,ternary compounds,and quaternary compounds.In these potential host materials,some of them have already been confirmed by experiments while the others are not yet.The 3DTI discussed here does not contain the materials with strong electron-electron correlation.Lastly,we give a brief summary and some outlooks in further studies.展开更多
High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surfac...High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2 xCrxTe3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing cartier density. Carrier-independent ferromag- netism heralds Sbz_xCrxTe3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics.展开更多
Recently one-dimensional topological phases are gaining increasing attentions. Like two- and three-dimensional ones, Onedimensional systems are important in a complete understanding of the topological properties. One-...Recently one-dimensional topological phases are gaining increasing attentions. Like two- and three-dimensional ones, Onedimensional systems are important in a complete understanding of the topological properties. One-dimensional topological phases have been realized using current experimental setups. Specially the signatures of Majorana fermions have been observed in onedimensional topological superconductors engineered with Rashiba nanowires. From the many studies, the paper reviews typical theoretical models of one-dimensional topological insulators and superconductors. For one-dimensional topological insulators, we introduce the Su-Schrieffer-Heeger, superlattices and Creutz models, while for topological superconductors the Kitaev model and Rashiba nanowire are introduced. These models not only provide an overview of one-dimensional topological phases, but also are the starting points for further studies.展开更多
基金supported by the National Basic Research Program of China (Grants No.2011CBA00100)the National Natural Science Foundation of China(Grant Nos.10974231 and 11174337)
文摘In recent years,three-dimensional topological insulators(3DTI) as a novel state of quantum matter have become a hot topic in the fields of condensed matter physics and materials sciences.To fulfill many spectacularly novel quantum phenomena predicted in 3DTI,real host materials are of crucial importance.In this review paper,we first introduce general methods of searching for new 3DTI based on the density-functional theory.Then,we review the recent progress on materials realization of 3DTI including simple elements,binary compounds,ternary compounds,and quaternary compounds.In these potential host materials,some of them have already been confirmed by experiments while the others are not yet.The 3DTI discussed here does not contain the materials with strong electron-electron correlation.Lastly,we give a brief summary and some outlooks in further studies.
基金the National Natural Science Foundation of China(Grant No.11174343)the Ministry of Science and Technology of Chinathe Chinese Academy of Sciences
文摘High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2 xCrxTe3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing cartier density. Carrier-independent ferromag- netism heralds Sbz_xCrxTe3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics.
基金the National Natural Science Foundation of China(Grant Nos.11274032 and 11104189)
文摘Recently one-dimensional topological phases are gaining increasing attentions. Like two- and three-dimensional ones, Onedimensional systems are important in a complete understanding of the topological properties. One-dimensional topological phases have been realized using current experimental setups. Specially the signatures of Majorana fermions have been observed in onedimensional topological superconductors engineered with Rashiba nanowires. From the many studies, the paper reviews typical theoretical models of one-dimensional topological insulators and superconductors. For one-dimensional topological insulators, we introduce the Su-Schrieffer-Heeger, superlattices and Creutz models, while for topological superconductors the Kitaev model and Rashiba nanowire are introduced. These models not only provide an overview of one-dimensional topological phases, but also are the starting points for further studies.