期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Pt/Co_3O_4/3DOM Al_2O_3:Highly effective catalysts for toluene combustion 被引量:9
1
作者 杨黄根 邓积光 +3 位作者 刘雨溪 谢少华 徐鹏 戴洪兴 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期934-946,共13页
Three-dimensionally ordered macro-/mesoporous alumina(3DOM Al2O3)-supported cobalt oxide and platinum nanocatalysts(xPt/yCo3O4/3DOM Al2O3,Pt mass fraction(x%)= 0-1.4%,Co3O4 mass fraction(y%) = 0-9.2%) were pre... Three-dimensionally ordered macro-/mesoporous alumina(3DOM Al2O3)-supported cobalt oxide and platinum nanocatalysts(xPt/yCo3O4/3DOM Al2O3,Pt mass fraction(x%)= 0-1.4%,Co3O4 mass fraction(y%) = 0-9.2%) were prepared using poly(methyl methacrylate) templating,incipient wetness impregnation and polyvinyl alcohol-protected reduction.The resulting xPt/yCo3O4/3DOM Al2O3 samples displayed a high-quality 3DOM architecture with macropores(180-200 nm in diameter) and mesopores(4-6 nm in diameter) together with surface areas in the range of 94 to 102m^2/g.Using these techniques,Co3O4 nanoparticles(NPs,18.3 nm) were loaded on the 3DOM Al2O3 surface,after which Pt NPs(2.3-2.5 nm) were uniformly dispersed on theyCo3O4/3DOM Al2O3.The1.3Pt/8.9Co3O4/3DOM Al2O3 exhibited the best performance for toluene oxidation,with a T(90%) value(the temperature required to achieve 90%toluene conversion) of 160 ℃ at a space velocity of20000 mL g^(-1) h^(-1).It is concluded that the excellent catalytic performance of the 1.3Pt/8.9Co3O4/3DOM Al2O3 is owing to well-dispersed Pt NPs,the high concentration of adsorbed oxygen species,good low-temperature reducibility,and strong interaction between the Pt and Co3O4 NPs,as well as the unique bimodal porous structure of the support. 展开更多
关键词 Three-dimensionally ordered macropore Alumina-supported cobalt oxide catalyst Supported platinum catalyst Toluene combustion
下载PDF
Synthesis of K-doped three-dimensionally ordered macroporous Mn_(0.5)Ce_(0.5)O_δ catalysts and their catalytic performance for soot oxidation 被引量:7
2
作者 于学华 赵震 +4 位作者 韦岳长 刘坚 李建梅 段爱军 姜桂元 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1957-1967,共11页
A series of K-doped Mn0.5Ce0.5Oδ (K-MCO) catalysts with three-dimensionally ordered macroporous (3DOM) structure and different K loadings were successfully synthesized using simple methods. These catalysts exhibi... A series of K-doped Mn0.5Ce0.5Oδ (K-MCO) catalysts with three-dimensionally ordered macroporous (3DOM) structure and different K loadings were successfully synthesized using simple methods. These catalysts exhibited well-defined 3DOM nanostructure, which consisted of extensive interconnecting networks of spherical voids. The effects of the calcination temperature and calcination time on the morphological characteristics and crystalline forms of the catalysts were systematically studied. The catalysts showed high catalytic activity for the combustion of soot. 3DOM 20% K-MCO-4h catalyst, in particular, showed the highest catalytic activity of all of the catalysts studied (e.g., Ts0 = 331 ~C and Smco2 = 95.3%). The occurrence of structural and synergistic effects among the K, Mn, and Ce atoms in the catalysts was favorable for enhancing their catalytic activity towards the combustion of diesel soot. Furthermore, the temperatures required for the complete combustion of the soot (〈400 ℃) were well within the exhaust temperature range (175-400 ℃), which means that the accumulated soot can be removed under the conditions of the diesel exhaust gas. These catalysts could therefore be used in numerous practical applications because they are easy to synthesize, exhibit high catalytic activity, and can be made from low cost materials. 展开更多
关键词 Three-dimensionally ordered macroporous structureMn0.5Ce0.5Oδ catalystPotassuim dopingSoot combustion
下载PDF
Three-dimensionally ordered macroporous SnO_2-based solid solution catalysts for effective soot oxidation 被引量:1
3
作者 Cheng Rao Rui Liu +6 位作者 Xiaohui Feng Jiating Shen Honggen Peng Xianglan Xu Xiuzhong Fang Jianjun Liu Xiang Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第10期1683-1694,共12页
A series of three‐dimensionally ordered macroporous(3DOM)SnO2‐based catalysts modified by the cations Ce4+,Mn3+,and Cu2+have been prepared by using a colloidal crystal templating method and tested for soot combustio... A series of three‐dimensionally ordered macroporous(3DOM)SnO2‐based catalysts modified by the cations Ce4+,Mn3+,and Cu2+have been prepared by using a colloidal crystal templating method and tested for soot combustion under loose contact condition.XRD and STEM mapping results confirm that all the secondary metal cations have entered the lattice matrix of tetragonal rutile SnO2 to form non‐continuous solid solutions,thus impeding crystallization and improving the surface areas and pore volumes of the modified catalysts.In comparison with regular SnO2 nanoparticles,the 3DOM SnO2 displays evidently improved activity,testifying that the formation of the 3DOM structure can anchor the soot particulates in the macro‐pores,which ensures that the contact of the soot particles with the active sites on the 3DOM skeleton is more easily formed,thus benefiting the target reaction.With the incorporation of the secondary metal cations,the activity of the catalyst can be further improved due to the formation of more abundant mobile oxygen species.In summary,these effects are believed to be the major factors responsible for the activity of the catalyst. 展开更多
关键词 Three‐dimensionally ordered macroporous catalyst Soot combustion SnO2 solid solution Lattice doping Oxygen vacancies
下载PDF
Three-dimensionally ordered macroporous CeO_2/Al_2O_3-supported Au nanoparticle catalysts: Effects of CeO_2 nanolayers on catalytic activity in soot oxidation 被引量:5
4
作者 Baofang Jin Yuechang Wei +5 位作者 Zhen Zhao Jian Liu Yazhao Li Renjie Li Aijun Duan Guiyuan Jiang 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第9期1629-1641,共13页
A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These c... A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These catalysts were characterized using scanning electron microscopy,the Brunauer‐Emmett‐Teller method,X‐ray diffraction,transmission electron microscopy,ultraviolet‐visible spectroscopy,and temperature‐programmed reduction by H2.Au nanoparticles of mean particle size5nm were well dispersed and supported on the inner walls of uniform macropores.The3DOM structure improved the contact efficiency between soot and the catalyst.An Al‐Ce‐O solid solution was formed in the multilayer support,i.e.,x‐CeO2/Al2O3,by the incorporation of Al3+ions into the CeO2lattice,which resulted in the creation of extrinsic oxygen vacancies.Strong interactions between the metal(Au)and the support(Ce)increased the amount of active oxygen species,and this promoted soot oxidation.The catalytic performance in soot combustion was evaluated using a temperature‐programmed oxidation technique.The presence of CeO2nanolayers in the3DOM Au/x‐CeO2/Al2O3catalysts clearly improved the catalytic activities in soot oxidation.Among the prepared catalysts,3DOM Au/20%CeO2/Al2O3showed high catalytic activity and stability in diesel soot oxidation. 展开更多
关键词 Three‐dimensionally ordered macroporous material Gold nanoparticle Multilayer support CeO2 nanolayer Soot combustion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部