By the aid of the international mining software SURPAC, a geologic database for a multi-metal mine was established, 3D models of the surface, geologic fault, ore body, cavity and the underground openings were built, a...By the aid of the international mining software SURPAC, a geologic database for a multi-metal mine was established, 3D models of the surface, geologic fault, ore body, cavity and the underground openings were built, and the volume of the cavity of the mine based on the cavity 3D model was calculated. In order to compute the reserves, a grade block model was built and each metal element grade was estimated using Ordinary Kriging. Then, the reserve of each metal element and every sublevel of the mine was worked out. Finally, the calculated result of each metal reserve to its actual prospecting reserve was compared, and the results show that they are all almost equal to each other. The absolute errors of Sn, Pb, and Zn reserves are only 1.45%, 1.59% and 1.62%, respectively. Obviously, the built models are reliable and the calculated results of reserves are correct. They can be used to assist the geologic and mining engineers of the mine to do research work of reserves estimation, mining design, plan making and so on.展开更多
An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) ...An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently.展开更多
Three-dimensional(3D) printing(3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas,...Three-dimensional(3D) printing(3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas, such as manufacturing, aerospace,medical, and industrial design. Recently, 3DP has gained considerable attention in the medical field. The image data can be quickly turned into physical objects by using 3DP technology. These objects are being used across a variety of surgical specialties. The shortage of cadaver specimens is a major problem in medical education. However, this concern has been solved with the emergence of 3DP model. Custom-made items can be produced by using 3DP technology. This innovation allows 3DP use in preoperative planning and surgical training. Learning is difficult among medical students because of the complex anatomical structures of the liver. Thus, 3D visualization is a useful tool in anatomy teaching and hepatic surgical training. However,conventional models do not capture haptic qualities. 3DP can produce highly accurate and complex physical models. Many types of human or animal differentiated cells can be printed successfully with the development of 3D bio-printing technology. This progress represents a valuable breakthrough that exhibits many potential uses, such as research on drug metabolism or liver disease mechanism. This technology can also be used to solve shortage of organs for transplant in the future.展开更多
BIM (building information modelling) has gained wider acceptance in the A/E/C (architecture/engineering/construction) industry in the US and internationally. This paper presents current industry approaches of impl...BIM (building information modelling) has gained wider acceptance in the A/E/C (architecture/engineering/construction) industry in the US and internationally. This paper presents current industry approaches of implementing 3D point cloud data in BIM and VDC (virtual design and construction) applications during various stages of a project life cycle and the challenges associated with processing the huge amount of 3D point cloud data. Conversion from discrete 3D point cloud raster data to geometric/vector BIM data remains to be a labor-intensive process. The needs for intelligent geometric feature detection/reconstruction algorithms for automated point cloud processing and issues related to data management are discussed. This paper also presents an innovative approach for integrating 3D point cloud data with BIM to efficiently augment built environment design, construction and management.展开更多
The paper presents an improved tensor-based active contour model in a variational level set formulation for medical image segmentation. In it, a new energy function is defined with a local intensity fitting term in in...The paper presents an improved tensor-based active contour model in a variational level set formulation for medical image segmentation. In it, a new energy function is defined with a local intensity fitting term in intensity inhomogeneity of the image, and with a global intensity fitting term in intensity homogeneity domain. Weighting factor is chosen to balance these two intensity fitting terms, which can be calculated automatically by local entropy. The level set regularization term is to replace contour curve to find the minimum of the energy function. Particularly, structure tensor is applied to describe the image, which overcomes the disadvantage of image feature without structure information.The experimental results show that our proposed method can segment image efficiently whether it presents intensity inhomogeneity or not and wherever the initial contour is. Moreover, compared with the Chan-Vese model and local binary fitting model, our proposed model not only handles better intensity inhomogeneity, but also is less sensitive to the location of initial contour.展开更多
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘By the aid of the international mining software SURPAC, a geologic database for a multi-metal mine was established, 3D models of the surface, geologic fault, ore body, cavity and the underground openings were built, and the volume of the cavity of the mine based on the cavity 3D model was calculated. In order to compute the reserves, a grade block model was built and each metal element grade was estimated using Ordinary Kriging. Then, the reserve of each metal element and every sublevel of the mine was worked out. Finally, the calculated result of each metal reserve to its actual prospecting reserve was compared, and the results show that they are all almost equal to each other. The absolute errors of Sn, Pb, and Zn reserves are only 1.45%, 1.59% and 1.62%, respectively. Obviously, the built models are reliable and the calculated results of reserves are correct. They can be used to assist the geologic and mining engineers of the mine to do research work of reserves estimation, mining design, plan making and so on.
基金Project(2007CB714202) supported by the National Key Basic Research Program of ChinaProject(SLDRCE10-B-07) supported by theMinistry of Science and Technology of China
文摘An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently.
基金supported by a grant from the National HighTech Research and Development Projects (Grant No. 2015AA020303)
文摘Three-dimensional(3D) printing(3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas, such as manufacturing, aerospace,medical, and industrial design. Recently, 3DP has gained considerable attention in the medical field. The image data can be quickly turned into physical objects by using 3DP technology. These objects are being used across a variety of surgical specialties. The shortage of cadaver specimens is a major problem in medical education. However, this concern has been solved with the emergence of 3DP model. Custom-made items can be produced by using 3DP technology. This innovation allows 3DP use in preoperative planning and surgical training. Learning is difficult among medical students because of the complex anatomical structures of the liver. Thus, 3D visualization is a useful tool in anatomy teaching and hepatic surgical training. However,conventional models do not capture haptic qualities. 3DP can produce highly accurate and complex physical models. Many types of human or animal differentiated cells can be printed successfully with the development of 3D bio-printing technology. This progress represents a valuable breakthrough that exhibits many potential uses, such as research on drug metabolism or liver disease mechanism. This technology can also be used to solve shortage of organs for transplant in the future.
文摘BIM (building information modelling) has gained wider acceptance in the A/E/C (architecture/engineering/construction) industry in the US and internationally. This paper presents current industry approaches of implementing 3D point cloud data in BIM and VDC (virtual design and construction) applications during various stages of a project life cycle and the challenges associated with processing the huge amount of 3D point cloud data. Conversion from discrete 3D point cloud raster data to geometric/vector BIM data remains to be a labor-intensive process. The needs for intelligent geometric feature detection/reconstruction algorithms for automated point cloud processing and issues related to data management are discussed. This paper also presents an innovative approach for integrating 3D point cloud data with BIM to efficiently augment built environment design, construction and management.
基金Acknowledgments This work was supported by Natural Science Fundamental Research Project of Jiangsu Colleges and Universities under Grant 11KJB510026, and National Science Foundation of P. R. China under Grants 11275007 and 81000639.
文摘The paper presents an improved tensor-based active contour model in a variational level set formulation for medical image segmentation. In it, a new energy function is defined with a local intensity fitting term in intensity inhomogeneity of the image, and with a global intensity fitting term in intensity homogeneity domain. Weighting factor is chosen to balance these two intensity fitting terms, which can be calculated automatically by local entropy. The level set regularization term is to replace contour curve to find the minimum of the energy function. Particularly, structure tensor is applied to describe the image, which overcomes the disadvantage of image feature without structure information.The experimental results show that our proposed method can segment image efficiently whether it presents intensity inhomogeneity or not and wherever the initial contour is. Moreover, compared with the Chan-Vese model and local binary fitting model, our proposed model not only handles better intensity inhomogeneity, but also is less sensitive to the location of initial contour.