三维加速度点质量模型法为反演陆地水储量变化提供了新的途径,采用三维加速度点质量模型法计算了中国华北地区2003—2014年的水储量变化。为了检验反演结果,采用球谐系数法以及德克萨斯大学空间研究中心(Center for Space Research,Univ...三维加速度点质量模型法为反演陆地水储量变化提供了新的途径,采用三维加速度点质量模型法计算了中国华北地区2003—2014年的水储量变化。为了检验反演结果,采用球谐系数法以及德克萨斯大学空间研究中心(Center for Space Research,University of Texas at Austin,CSR)发布的RL06 Mascon模型进行对比分析。研究结果表明,两种方法反演结果均反映出华北地区陆地水储量长期处于亏损趋势,但不同方法计算的亏损速度有一定的差别,三维加速度点质量模型法采用CSR提供的RL06数据反演的华北地区陆地水储量亏损速度为-3.09 cm/a,而球谐系数法反演结果为-2.60 cm/a;三维加速度点质量模型法特征点的反演结果与Mascon法相关系数更高,而球谐系数法与三维加速度点质量模型法结果之间的差异主要是由条带噪声约束平滑策略不一致导致的。展开更多
A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve...A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.展开更多
3D inversion of borehole-surface electrical data for complex geo-electrical models is still a challenging problem in geophysical exploration. We have developed a program for 3D inversion to borehole-surface electrical...3D inversion of borehole-surface electrical data for complex geo-electrical models is still a challenging problem in geophysical exploration. We have developed a program for 3D inversion to borehole-surface electrical data based on the quasi-analytical approximation (QA) and re-weighted regularized conjugate gradient method (RRCG) algorithms using Visual Fortran 6.5. Application of the QA approximation to forward modeling and Frechet derivative computations speeds up the calculation dramatically. The trial calculation for synthetic data of theoretical model showed that the program is fast and highly precise.展开更多
A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static...A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.展开更多
This article reports recent developments and advances in the simulation of the CO2-formation fluid displacement behaviour at the pore scale of subsurface porous media. Roughly, there are three effective visualization ...This article reports recent developments and advances in the simulation of the CO2-formation fluid displacement behaviour at the pore scale of subsurface porous media. Roughly, there are three effective visualization approaches to detect and observe the CO2-formation fluid displacement mechanism at the micro-scale, namely, magnetic resonance imaging, X-ray computed tomography and fabricated micromodels, but they are not capable of investigating the dis- placement process at the nano-scale. Though a lab-on-chip approach for the direct visualization of the fluid flow behaviour in nanoscale channels has been developed using an advanced epi-fluorescence microscopy method combined with a nanofluidic chip, it is still a qualitative analysis method. The lattice Boltzmann method (LBM) can simulate the CO2 displacement processes in a two-dimensional or three-dimensional (3D) pore structure, but until now, the CO2 displace- ment mechanisms had not been thoroughly investigated and the 3D pore structure of real rock had not been directly taken into account in the simulation of the CO2 displacement process. The status of research on the applications of CO2 displacement to enhance shale gas recovery is also analyzed in this paper. The coupling of molecular dynamics and LBM in tandem is proposed to simulate the CO2-shale gas displacement process based on the 3D digital model of shale obtained from focused ion beams and scanning electron microscopy.展开更多
A finite-rate method is used to simulate the three-dimensional combustion process in a plasma generator with CH4 as the fuel. The simulation was run with RNG k-ε model to simulate turbulence, with eddy-dissipation-co...A finite-rate method is used to simulate the three-dimensional combustion process in a plasma generator with CH4 as the fuel. The simulation was run with RNG k-ε model to simulate turbulence, with eddy-dissipation-concept (EDC) model to simulate the combustion and with discrete ordinates model to simulate radiation. The numerical results show that the flow field characteristics and the parameter distributions are under the condition of rich fuels, and these results provide valuable information when optimizing the plasma generator design and organizing its flow fields.展开更多
Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor ...Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations.展开更多
In order to study the stability control mechanism of a concave slope with circular landslide, and remove the influence of differences in shape on slope stability, the limit analysis method of a simplified Bishop metho...In order to study the stability control mechanism of a concave slope with circular landslide, and remove the influence of differences in shape on slope stability, the limit analysis method of a simplified Bishop method was employed. The sliding body was divided into strips in a three-dimensional model, and the lateral earth pressure was put into mechanical analysis and the three-dimensional stability analysis methods applicable for circular sliding in concave slope were deduced. Based on geometric structure and the geological parameters of a concave slope, the influence rule of curvature radius and the top and bottom arch height on the concave slope stability were analyzed. The results show that the stability coefficient decreases after growth, first in the transition stage of slope shape from flat to concave, and it has been confirmed that there is a best size to make the slope stability factor reach a maximum. By contrast with average slope, the stability of a concave slope features a smaller range of ascension with slope height increase, which indicates that the enhancing effect of a concave slope is apparent only with lower slope heights.展开更多
文摘三维加速度点质量模型法为反演陆地水储量变化提供了新的途径,采用三维加速度点质量模型法计算了中国华北地区2003—2014年的水储量变化。为了检验反演结果,采用球谐系数法以及德克萨斯大学空间研究中心(Center for Space Research,University of Texas at Austin,CSR)发布的RL06 Mascon模型进行对比分析。研究结果表明,两种方法反演结果均反映出华北地区陆地水储量长期处于亏损趋势,但不同方法计算的亏损速度有一定的差别,三维加速度点质量模型法采用CSR提供的RL06数据反演的华北地区陆地水储量亏损速度为-3.09 cm/a,而球谐系数法反演结果为-2.60 cm/a;三维加速度点质量模型法特征点的反演结果与Mascon法相关系数更高,而球谐系数法与三维加速度点质量模型法结果之间的差异主要是由条带噪声约束平滑策略不一致导致的。
基金Projects(41674080,41674079)supported by the National Natural Science Foundation of China
文摘A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.
文摘3D inversion of borehole-surface electrical data for complex geo-electrical models is still a challenging problem in geophysical exploration. We have developed a program for 3D inversion to borehole-surface electrical data based on the quasi-analytical approximation (QA) and re-weighted regularized conjugate gradient method (RRCG) algorithms using Visual Fortran 6.5. Application of the QA approximation to forward modeling and Frechet derivative computations speeds up the calculation dramatically. The trial calculation for synthetic data of theoretical model showed that the program is fast and highly precise.
基金Projects(51804113,51434006,51874130)supported by the National Natural Science Foundation of ChinaProject(E51768)supported by the Doctoral Initiation Foundation of Hunan University of Science and Technology,China+1 种基金Project(E61610)supported by the Postdoctoral Research Foundation of Hunan University of Science and Technology,ChinaProject(E21734)supported by the Open Foundation of Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines,China
文摘A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.
基金The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant Nos. 51374213 and 51674251), the State Key Research Development Program of China (Grant No. 2016YFC0600705), the National Natural Science Fund for Distinguished Young Scholars of China (Grant No. 51125017), the Fund for Innovative Research and Development Group Program of Jiangsu Province (Grant No. 2014- 27), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51421003), and the Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD 2014).
文摘This article reports recent developments and advances in the simulation of the CO2-formation fluid displacement behaviour at the pore scale of subsurface porous media. Roughly, there are three effective visualization approaches to detect and observe the CO2-formation fluid displacement mechanism at the micro-scale, namely, magnetic resonance imaging, X-ray computed tomography and fabricated micromodels, but they are not capable of investigating the dis- placement process at the nano-scale. Though a lab-on-chip approach for the direct visualization of the fluid flow behaviour in nanoscale channels has been developed using an advanced epi-fluorescence microscopy method combined with a nanofluidic chip, it is still a qualitative analysis method. The lattice Boltzmann method (LBM) can simulate the CO2 displacement processes in a two-dimensional or three-dimensional (3D) pore structure, but until now, the CO2 displace- ment mechanisms had not been thoroughly investigated and the 3D pore structure of real rock had not been directly taken into account in the simulation of the CO2 displacement process. The status of research on the applications of CO2 displacement to enhance shale gas recovery is also analyzed in this paper. The coupling of molecular dynamics and LBM in tandem is proposed to simulate the CO2-shale gas displacement process based on the 3D digital model of shale obtained from focused ion beams and scanning electron microscopy.
文摘A finite-rate method is used to simulate the three-dimensional combustion process in a plasma generator with CH4 as the fuel. The simulation was run with RNG k-ε model to simulate turbulence, with eddy-dissipation-concept (EDC) model to simulate the combustion and with discrete ordinates model to simulate radiation. The numerical results show that the flow field characteristics and the parameter distributions are under the condition of rich fuels, and these results provide valuable information when optimizing the plasma generator design and organizing its flow fields.
文摘Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations.
基金financially supported by the China Postdoctoral Science Foundation(No.2015M580491)the National Natural Science Foundation of China(No.51404262)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20140213)the National High Technology Research and Development Program of China(No.2012AA062004)
文摘In order to study the stability control mechanism of a concave slope with circular landslide, and remove the influence of differences in shape on slope stability, the limit analysis method of a simplified Bishop method was employed. The sliding body was divided into strips in a three-dimensional model, and the lateral earth pressure was put into mechanical analysis and the three-dimensional stability analysis methods applicable for circular sliding in concave slope were deduced. Based on geometric structure and the geological parameters of a concave slope, the influence rule of curvature radius and the top and bottom arch height on the concave slope stability were analyzed. The results show that the stability coefficient decreases after growth, first in the transition stage of slope shape from flat to concave, and it has been confirmed that there is a best size to make the slope stability factor reach a maximum. By contrast with average slope, the stability of a concave slope features a smaller range of ascension with slope height increase, which indicates that the enhancing effect of a concave slope is apparent only with lower slope heights.