针对传统基于激光雷达(Light Detection And Ranging,LiDAR)数据的树种分类方法难以直接且全面地利用点云的三维结构信息的问题,提出一种基于三维深度学习的机载LiDAR数据的树种分类方法。该方法直接从三维数据中抽象出高维特征,而无须...针对传统基于激光雷达(Light Detection And Ranging,LiDAR)数据的树种分类方法难以直接且全面地利用点云的三维结构信息的问题,提出一种基于三维深度学习的机载LiDAR数据的树种分类方法。该方法直接从三维数据中抽象出高维特征,而无须将点云转化为体素或二维图像。以塞罕坝国家森林公园内白桦和落叶松两个树种的无人机LiDAR数据为研究对象,对其进行数据滤波,去除噪声和地面点;基于点云距离和改进的分水岭分割的方法提取单木并制作数据集;最终建立由权重共享的多层感知器、最大池、全连接层和softmax分类器组成的深层神经网络,其能自动提取树木的高维特征并实现树种分类。实验结果显示分类总体准确率为86.7%,kappa系数为0.73,最优特征维度为1024,最优点密度为2048。与将单木点云投影到二维视图的方法相比,该算法提供了更高的分类精度,且能有效减少计算成本、提高工作效率。展开更多
The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity i...The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.展开更多
文摘针对传统基于激光雷达(Light Detection And Ranging,LiDAR)数据的树种分类方法难以直接且全面地利用点云的三维结构信息的问题,提出一种基于三维深度学习的机载LiDAR数据的树种分类方法。该方法直接从三维数据中抽象出高维特征,而无须将点云转化为体素或二维图像。以塞罕坝国家森林公园内白桦和落叶松两个树种的无人机LiDAR数据为研究对象,对其进行数据滤波,去除噪声和地面点;基于点云距离和改进的分水岭分割的方法提取单木并制作数据集;最终建立由权重共享的多层感知器、最大池、全连接层和softmax分类器组成的深层神经网络,其能自动提取树木的高维特征并实现树种分类。实验结果显示分类总体准确率为86.7%,kappa系数为0.73,最优特征维度为1024,最优点密度为2048。与将单木点云投影到二维视图的方法相比,该算法提供了更高的分类精度,且能有效减少计算成本、提高工作效率。
基金supported by the Key Laboratory of Geological Survey and Evaluation of Ministry of Education (China University of Geosciences)(No. GLAB2020ZR13)
文摘The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.