目标检测算法中关键信息的特征提取是影响算法精度的重要因素。针对当前三维目标检测算法中存在的关键点采样困难、特征提取不充分等问题,借鉴PV-RCNN三维目标检测网络,提出一种基于强语义关键点采样的三维目标检测方法SSPS-RCNN(strong...目标检测算法中关键信息的特征提取是影响算法精度的重要因素。针对当前三维目标检测算法中存在的关键点采样困难、特征提取不充分等问题,借鉴PV-RCNN三维目标检测网络,提出一种基于强语义关键点采样的三维目标检测方法SSPS-RCNN(strong semantic point sampling RCNN)。在关键点采样阶段,该算法采用语义加权点采样和提案区域点过滤相融合的方法,获得更具特征代表性的采样关键点,以提升采样点中前景点的比例;在不增加网络结构的基础上,将语义信息重新加权关键点特征,以进一步细化关键点的特征贡献提升算法精度。在KITTI数据集上的实验结果表明该算法与现有主流算法相比,对减少物体检测中的漏检与错检问题和整体检测精度提升,表现出良好的稳定性和鲁棒性。展开更多
文摘目标检测算法中关键信息的特征提取是影响算法精度的重要因素。针对当前三维目标检测算法中存在的关键点采样困难、特征提取不充分等问题,借鉴PV-RCNN三维目标检测网络,提出一种基于强语义关键点采样的三维目标检测方法SSPS-RCNN(strong semantic point sampling RCNN)。在关键点采样阶段,该算法采用语义加权点采样和提案区域点过滤相融合的方法,获得更具特征代表性的采样关键点,以提升采样点中前景点的比例;在不增加网络结构的基础上,将语义信息重新加权关键点特征,以进一步细化关键点的特征贡献提升算法精度。在KITTI数据集上的实验结果表明该算法与现有主流算法相比,对减少物体检测中的漏检与错检问题和整体检测精度提升,表现出良好的稳定性和鲁棒性。