To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W...To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.展开更多
A 3D stereotomography algorithm, which is derived from the 3D Cartesian coordinate, is applied for the first time to the deep-sea data acquired in the LH area, South China Sea, to invert a macro velocity model for pre...A 3D stereotomography algorithm, which is derived from the 3D Cartesian coordinate, is applied for the first time to the deep-sea data acquired in the LH area, South China Sea, to invert a macro velocity model for pre-stack depth migration. The successful implementation of stereotomography is highly dependent on the correct extraction of slowness components and the proper application of regularization terms. With the help of the structure tensor algorithm, a high-quality 3D stereotomography data space is achieved in a very efficient manner. Then, considering that the horizontal slowness in cross-line direction is usually unavailable for 3D narrow-azimuth data, the regularization terms must be enhanced to guarantee a stable convergence of the presented algorithm. The inverted model serves as a good model for the 3D pre-stack depth migration. The synthetic and real data examples demonstrated the robustness and effectiveness of the presented algorithm and the related schemes.展开更多
Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,...Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.展开更多
OBJECTIVE To investigate the clinical efficacy and toxic effect of the 3-dimensional conformal radiation therapy (3DCRT) for non- small cell lung cancer (NSCLC). METHODS Fifty-two patients with the Stage-I and IV ...OBJECTIVE To investigate the clinical efficacy and toxic effect of the 3-dimensional conformal radiation therapy (3DCRT) for non- small cell lung cancer (NSCLC). METHODS Fifty-two patients with the Stage-I and IV NSCLC were treated with 3DCRT. Cross analysis of the clinical data was conducted in the comparison between the 52 cases with 3DCRT and the other 50 cases with the conventional radiation therapy (CRT). In the 3DCRT group, only the primary tumor and positive lymph-node draining area were included in the clinical target area, setting 4 to 6 coplanar or non-coplanar irradiation fields, with 2 Gy or 3 Gy/fraction, 1 fraction a day and 5 fractions per week. The total dose ranged from a test dose (DT) of 66 Gy to 72 Gy. In the CRT group, the field area contained the primary tumor plus the homolateral hilum of the lung, the mediastinum superior or hol-mediastinum, and opposed anteroposterior irradiation. When the dosage reached DT 36-40 Gy, an oblique portal administered radiation was conducted in order to avoid injuring the spinal cord. The DT was 1.8-2.0 Gy/fraction, 1 fraction a day, 5 fractions per week, with a total dose of 60 Gy to 70 Gy. RESULTS The therapeutic effect (CR + PR) was 90.4% in the 3DCRT group, and was 72% in the CRT group. There was statistically significant difference between the two groups, P 〈 0.01. There was a clinical symptom improvement attained by 96.5% and 86.4% respectively in the two groups, and there was a statistically significant difference between the groups, P 〈 0.01. The 6-month, 1 and 2-year overall survival rates were 92.3%, 75.0% and 42.3% in the 3DCRT group, and 76%, 60% and 30% in the CRT group, respectively. There was a significant difference in the 6-month overall survival rate between the groups, P 〈 0.05. There was no obvious significant difference in the 1 and 2-year overall survival rates between the two groups, P 〉 0.05. The toxic reaction was 12.5% and 23.7% respectively in the 3DCRT and CRT groups. Acute radioactive esophagitis and leucopenia were markedly lower in the 3DCRT group than in the CRT group. There was a statistically significant difference between the groups, P 〈 0.05. No toxic reaction of Stage-III and over was found in the 3DCRT group during radiation therapy. CONCLUSION The 3DCRT method has a satisfactory shortterm efficacy and improvement of clinical symptoms in treating NSCLC, with a mild toxic reaction and good tolerance in patients. It can be used for enhancing the tumor-control rate and bettering the quality of life.展开更多
In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D e...In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM.展开更多
This study was aimed at investigating the sampling strategies for 2 types of figures: 3-D cubes and human faces. The research was focused on: (a) from where the sampling process started; (b) in what order the figures&...This study was aimed at investigating the sampling strategies for 2 types of figures: 3-D cubes and human faces. The research was focused on: (a) from where the sampling process started; (b) in what order the figures' features were sampled. The study consisted of 2 experiments: (a) sampling strategies for 3-D cubes; (b) sampling strategies for human faces. The results showed that: (a), for 3-D cubes, the first sampling was mostly located at the outline parts, rarely at the center part; while for human faces, the first sampling was mostly located at the hair and outline parts, rarely at the mouth or cheek parts, in most cases, the first sampling-position had no significant effects on cognitive performance and that (b), the sampling order, both for 3-D cubes and for human faces, was determined by the degree of difference among the sampled-features.展开更多
Starting from the known variable separation excitations of a(2 + 1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system,rich coherent structures can be derived.The interactions among different types of solitary ...Starting from the known variable separation excitations of a(2 + 1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system,rich coherent structures can be derived.The interactions among different types of solitary waves like peakons,dromions,and compactons are investigated and some novel features or interesting behaviors are revealed.The results show that the interactions for peakon-dromion,compacton-dromion,and peakon-compacton may be completely nonelastic or completely elastic.展开更多
The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys-CFX and model tests.The vortex shedding and force were recorded to determine the effect of spacing...The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys-CFX and model tests.The vortex shedding and force were recorded to determine the effect of spacing on the two-degree-of-freedom oscillation of the risers.CFX was used to study the single riser and two parallel risers in 2–8D spacing considering the coupling effect.Because of the limited width of water channel,only three different riser spacings,2D,3D,and 4D,were tested to validate the characteristics of the two parallel risers by comparing to the numerical simulation.The results indicate that the lift force changes significantly with the increase in spacing,and in the case of 3D spacing,the lift force of the two parallel risers reaches the maximum.The vortex shedding of the risers in 3D spacing shows that a variable velocity field with the same frequency as the vortex shedding is generated in the overlapped area,thus equalizing the period of drag force to that of lift force.It can be concluded that the interaction between the two parallel risers is significant when the risers are brought to a small distance between them because the trajectory of riser changes from oval to curve 8 as the spacing is increased.The phase difference of lift force between the two risers is also different as the spacing changes.展开更多
基金supported by the National Natural Science Foundation of China (No. 41004054) Research Fund for the Doctoral Program of Higher Education of China (No. 20105122120002)Natural Science Key Project, Sichuan Provincial Department of Education (No. 092A011)
文摘To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.
基金funded by China Natural Science Foundation(Nos.41574098 and 41630964)China key specialized project(No.2016ZX05026-001-03)
文摘A 3D stereotomography algorithm, which is derived from the 3D Cartesian coordinate, is applied for the first time to the deep-sea data acquired in the LH area, South China Sea, to invert a macro velocity model for pre-stack depth migration. The successful implementation of stereotomography is highly dependent on the correct extraction of slowness components and the proper application of regularization terms. With the help of the structure tensor algorithm, a high-quality 3D stereotomography data space is achieved in a very efficient manner. Then, considering that the horizontal slowness in cross-line direction is usually unavailable for 3D narrow-azimuth data, the regularization terms must be enhanced to guarantee a stable convergence of the presented algorithm. The inverted model serves as a good model for the 3D pre-stack depth migration. The synthetic and real data examples demonstrated the robustness and effectiveness of the presented algorithm and the related schemes.
基金This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0103 and 2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.91837208 and 42075085).
文摘Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.
基金supported by a grant from the Natural Science Foundation of Ningxia Hui Autonomous Region,China(No.NZ0680)
文摘OBJECTIVE To investigate the clinical efficacy and toxic effect of the 3-dimensional conformal radiation therapy (3DCRT) for non- small cell lung cancer (NSCLC). METHODS Fifty-two patients with the Stage-I and IV NSCLC were treated with 3DCRT. Cross analysis of the clinical data was conducted in the comparison between the 52 cases with 3DCRT and the other 50 cases with the conventional radiation therapy (CRT). In the 3DCRT group, only the primary tumor and positive lymph-node draining area were included in the clinical target area, setting 4 to 6 coplanar or non-coplanar irradiation fields, with 2 Gy or 3 Gy/fraction, 1 fraction a day and 5 fractions per week. The total dose ranged from a test dose (DT) of 66 Gy to 72 Gy. In the CRT group, the field area contained the primary tumor plus the homolateral hilum of the lung, the mediastinum superior or hol-mediastinum, and opposed anteroposterior irradiation. When the dosage reached DT 36-40 Gy, an oblique portal administered radiation was conducted in order to avoid injuring the spinal cord. The DT was 1.8-2.0 Gy/fraction, 1 fraction a day, 5 fractions per week, with a total dose of 60 Gy to 70 Gy. RESULTS The therapeutic effect (CR + PR) was 90.4% in the 3DCRT group, and was 72% in the CRT group. There was statistically significant difference between the two groups, P 〈 0.01. There was a clinical symptom improvement attained by 96.5% and 86.4% respectively in the two groups, and there was a statistically significant difference between the groups, P 〈 0.01. The 6-month, 1 and 2-year overall survival rates were 92.3%, 75.0% and 42.3% in the 3DCRT group, and 76%, 60% and 30% in the CRT group, respectively. There was a significant difference in the 6-month overall survival rate between the groups, P 〈 0.05. There was no obvious significant difference in the 1 and 2-year overall survival rates between the two groups, P 〉 0.05. The toxic reaction was 12.5% and 23.7% respectively in the 3DCRT and CRT groups. Acute radioactive esophagitis and leucopenia were markedly lower in the 3DCRT group than in the CRT group. There was a statistically significant difference between the groups, P 〈 0.05. No toxic reaction of Stage-III and over was found in the 3DCRT group during radiation therapy. CONCLUSION The 3DCRT method has a satisfactory shortterm efficacy and improvement of clinical symptoms in treating NSCLC, with a mild toxic reaction and good tolerance in patients. It can be used for enhancing the tumor-control rate and bettering the quality of life.
文摘In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM.
基金Project (No. 39670262) supported by the National Natural Science Foundation of Chinathe International Scholar Exchange Fellowship Program (2000) of the Korea Foundation For Advanced Studies
文摘This study was aimed at investigating the sampling strategies for 2 types of figures: 3-D cubes and human faces. The research was focused on: (a) from where the sampling process started; (b) in what order the figures' features were sampled. The study consisted of 2 experiments: (a) sampling strategies for 3-D cubes; (b) sampling strategies for human faces. The results showed that: (a), for 3-D cubes, the first sampling was mostly located at the outline parts, rarely at the center part; while for human faces, the first sampling was mostly located at the hair and outline parts, rarely at the mouth or cheek parts, in most cases, the first sampling-position had no significant effects on cognitive performance and that (b), the sampling order, both for 3-D cubes and for human faces, was determined by the degree of difference among the sampled-features.
文摘Starting from the known variable separation excitations of a(2 + 1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system,rich coherent structures can be derived.The interactions among different types of solitary waves like peakons,dromions,and compactons are investigated and some novel features or interesting behaviors are revealed.The results show that the interactions for peakon-dromion,compacton-dromion,and peakon-compacton may be completely nonelastic or completely elastic.
基金This study is supported financially by the National Natural Science Foundation of China (Nos.51179179 and 51239008)
文摘The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys-CFX and model tests.The vortex shedding and force were recorded to determine the effect of spacing on the two-degree-of-freedom oscillation of the risers.CFX was used to study the single riser and two parallel risers in 2–8D spacing considering the coupling effect.Because of the limited width of water channel,only three different riser spacings,2D,3D,and 4D,were tested to validate the characteristics of the two parallel risers by comparing to the numerical simulation.The results indicate that the lift force changes significantly with the increase in spacing,and in the case of 3D spacing,the lift force of the two parallel risers reaches the maximum.The vortex shedding of the risers in 3D spacing shows that a variable velocity field with the same frequency as the vortex shedding is generated in the overlapped area,thus equalizing the period of drag force to that of lift force.It can be concluded that the interaction between the two parallel risers is significant when the risers are brought to a small distance between them because the trajectory of riser changes from oval to curve 8 as the spacing is increased.The phase difference of lift force between the two risers is also different as the spacing changes.