期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度特征融合和网格注意力机制的三维肝脏影像分割方法
1
作者 郑帅 张晓龙 +1 位作者 邓鹤 任宏伟 《计算机应用》 CSCD 北大核心 2023年第7期2303-2310,共8页
在计算机断层扫描(CT)和磁共振成像(MRI)的影像中肝脏与邻近脏器的灰度值相似性都比较高,为自动精确地分割肝脏,提出一种基于多尺度特征融合和网格注意力机制的三维肝脏影像分割方法MAGNet(Multi-scale feature fusion And Grid attenti... 在计算机断层扫描(CT)和磁共振成像(MRI)的影像中肝脏与邻近脏器的灰度值相似性都比较高,为自动精确地分割肝脏,提出一种基于多尺度特征融合和网格注意力机制的三维肝脏影像分割方法MAGNet(Multi-scale feature fusion And Grid attention mechanism Network)。首先,通过注意力引导连接模块来连接高层特征和低层特征以提取出重要的上下文信息,并且在注意力引导连接模块中引入网格注意力机制来关注感兴趣的分割区域;然后,通过在单个特征图中按通道数进行分层连接形成多尺度特征融合模块,并用该模块替换基础卷积块以获取多尺度语义信息;最后,利用深度监督机制解决梯度消失、梯度爆炸和收敛过慢等问题。实验结果表明:在3DIRCADb数据集上,与U3-Net+DC方法相比,MAGNet在Dice相似系数(DSC)指标上提升了0.10个百分点,在相对体积差(RVD)指标上降低了1.97个百分点;在Sliver07数据集上,与CANet方法相比,MAGNet在DSC指标上提升了0.30个百分点,在体素重叠误差(VOE)指标上降低了0.68个百分点,在平均对称表面距离(ASD)和对称位置表面距离的均方根(RMSD)指标上分别降低了0.03 mm和0.22 mm;在某医院肝脏MRI数据集上,MAGNet在所有指标上也均具有良好的结果。另外,将MAGNet应用于3DIRCADb数据集和某医院肝脏MRI数据集进行混合形成的数据集,也取得了非常有竞争力的分割效果。 展开更多
关键词 三维肝脏医疗影像 语义分割 深度学习 多尺度特征融合 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部