The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is abl...The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is able to automatically recognize any position between depression and elevation on an object surface.Theoretical analysis and experimental verification are presented.展开更多
Power ultrasound is finding widespread applications in assisting conventional processes yielding products of better quality at lower processing power and temperature. Transmission of ultrasound is known to be affected...Power ultrasound is finding widespread applications in assisting conventional processes yielding products of better quality at lower processing power and temperature. Transmission of ultrasound is known to be affected by the boundaries between layers of different materials or same material but in different states (solid or liquid or gas). This paper investigates the effects of ultrasound (US) on the surface of the solidified weld which has been subjected to ultrasonic vibrations of 20 kHz frequency during laser welding. Vibrations due to ultrasound normally exert a very high force which is usually hundred or thousand times the gravity. The transverse waves will also cause movement of molten material in the weld. As the surface of the weld beads were of interest and not the mechanical properties and the microstructure, investigation of bead on plate welds were found to be sufficient. High carbon steel plate was held at one end by the ultrasonic horn through which ultrasound was injected. A bead on plate weld using a CO2 laser (1 kW) was then performed along the center of the plate using three different welding speeds namely, 400, 1200 and 2000 mm per minute. The ultrasonic powers selected were 3 W and 6 W respectively for each welding speed as higher acoustical power was causing ejection of molten metal from the pool during welding. 3D surface measurements and analysis were then made on a section of length 20 mm using a Talysurf machine. The results show that the surface of the weld was affected to different extent depending on the positions being considered in the weld. Some regions were similar to the reference weld whereas some specific regions were heavily disrupted with deep valleys followed by high peak/s. This shows that US vibration of weld pools, even at very small acoustical power, is a more complex problem than other similar processes such as casting because of the very small volume of molten metal involved.展开更多
文摘The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is able to automatically recognize any position between depression and elevation on an object surface.Theoretical analysis and experimental verification are presented.
文摘Power ultrasound is finding widespread applications in assisting conventional processes yielding products of better quality at lower processing power and temperature. Transmission of ultrasound is known to be affected by the boundaries between layers of different materials or same material but in different states (solid or liquid or gas). This paper investigates the effects of ultrasound (US) on the surface of the solidified weld which has been subjected to ultrasonic vibrations of 20 kHz frequency during laser welding. Vibrations due to ultrasound normally exert a very high force which is usually hundred or thousand times the gravity. The transverse waves will also cause movement of molten material in the weld. As the surface of the weld beads were of interest and not the mechanical properties and the microstructure, investigation of bead on plate welds were found to be sufficient. High carbon steel plate was held at one end by the ultrasonic horn through which ultrasound was injected. A bead on plate weld using a CO2 laser (1 kW) was then performed along the center of the plate using three different welding speeds namely, 400, 1200 and 2000 mm per minute. The ultrasonic powers selected were 3 W and 6 W respectively for each welding speed as higher acoustical power was causing ejection of molten metal from the pool during welding. 3D surface measurements and analysis were then made on a section of length 20 mm using a Talysurf machine. The results show that the surface of the weld was affected to different extent depending on the positions being considered in the weld. Some regions were similar to the reference weld whereas some specific regions were heavily disrupted with deep valleys followed by high peak/s. This shows that US vibration of weld pools, even at very small acoustical power, is a more complex problem than other similar processes such as casting because of the very small volume of molten metal involved.