Objective: The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods :A biosystem model of the man femoral hip joint by using the GE ( General Electric...Objective: The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods :A biosystem model of the man femoral hip joint by using the GE ( General Electric) lightspeed multi-lay spiral CT is conducted. A 3D finite element model is established by employing the finite element software ANSYS. The FE analysis mainly concentrates on the effects of the impact directions arising from intense movements and the parenchyma on the femoral hip joint on the stress distributions of the proximal femur. Results:The parenchyma on the hip joint has relatively large relaxation effect on the impact loads. Conclusion:Effects of the angle δ of the impact load to the anterior direction and the angle γ of the impact load to the femur shaft on the bone fracture are given;δ has larger effect on the stress and strain distributions than the angle γ,which mainly represents the fracture of the upper femur including the femoral neck fracture when the posterolateral femur is impacted, consistent with the clinical resuits.展开更多
Based on the load model of a uniform isotropic semi-infinite elastic medium,we deduced a calculation of vertical displacement and tilt and proposed a method of calculation of vertical displacements and tilts caused by...Based on the load model of a uniform isotropic semi-infinite elastic medium,we deduced a calculation of vertical displacement and tilt and proposed a method of calculation of vertical displacements and tilts caused by irregular load on the ground or underground at a certain point with two-dimensional and three-dimensional shapes. We compared the difference between the simplified model and the irregular model. Finally,the vertical displacements near the irregular load and the distribution of horizontal tilt are presented.The results show that,compared with the point simplified model,the irregular load model has certain advantages for describing the near field. The establishment of a twodimensional irregular load model can help with the calculation of the modal vector superposition after load scattering. The three-dimensional irregular load model can redistribute load through different weights given to the scattered points after the load scattering,and then obtain displacement with the vector calculation method. The results of vector superposition calculation from the scattered irregular load both in two-dimensions and three-dimensions are all convergent obviously as grids become denser,and it is shown that the calculation method is correct and feasible.展开更多
文摘Objective: The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods :A biosystem model of the man femoral hip joint by using the GE ( General Electric) lightspeed multi-lay spiral CT is conducted. A 3D finite element model is established by employing the finite element software ANSYS. The FE analysis mainly concentrates on the effects of the impact directions arising from intense movements and the parenchyma on the femoral hip joint on the stress distributions of the proximal femur. Results:The parenchyma on the hip joint has relatively large relaxation effect on the impact loads. Conclusion:Effects of the angle δ of the impact load to the anterior direction and the angle γ of the impact load to the femur shaft on the bone fracture are given;δ has larger effect on the stress and strain distributions than the angle γ,which mainly represents the fracture of the upper femur including the femoral neck fracture when the posterolateral femur is impacted, consistent with the clinical resuits.
基金funded by the Earthquake Tracing Oriented Task of Monitoring and Forecasting Department of China Earthquake Administration in 2015(2015020201):the 12th“Five-year Plan”Science and Technology Support Plan of China(2012BAK19B02)
文摘Based on the load model of a uniform isotropic semi-infinite elastic medium,we deduced a calculation of vertical displacement and tilt and proposed a method of calculation of vertical displacements and tilts caused by irregular load on the ground or underground at a certain point with two-dimensional and three-dimensional shapes. We compared the difference between the simplified model and the irregular model. Finally,the vertical displacements near the irregular load and the distribution of horizontal tilt are presented.The results show that,compared with the point simplified model,the irregular load model has certain advantages for describing the near field. The establishment of a twodimensional irregular load model can help with the calculation of the modal vector superposition after load scattering. The three-dimensional irregular load model can redistribute load through different weights given to the scattered points after the load scattering,and then obtain displacement with the vector calculation method. The results of vector superposition calculation from the scattered irregular load both in two-dimensions and three-dimensions are all convergent obviously as grids become denser,and it is shown that the calculation method is correct and feasible.