The problem of collecting solar energy and increasing its efficiency was studied in this paper. It was discovered that a 3DPV (three-dimensional photovoltaic) structures can generate greater amounts of measured ener...The problem of collecting solar energy and increasing its efficiency was studied in this paper. It was discovered that a 3DPV (three-dimensional photovoltaic) structures can generate greater amounts of measured energy densities than stationary flat PV panels (rate: 2 to 20). It has been found that the same structures work better not only because they are made in 3D but because PV panels do not have linear dependency on geometry. It seems that the conversion efficiency depends on the process of absorption of the solar energy, too, or in other words on the E. Yablonovich limit. The findings suggest that the quantity of material of solar panels may be reduced to generate the same amount of electricity.展开更多
The author considers a thermal convection problem with infinite Prandtl number in two or three dimensions. The mathematical model of such problem is described as an initial boundary value problem made up of three part...The author considers a thermal convection problem with infinite Prandtl number in two or three dimensions. The mathematical model of such problem is described as an initial boundary value problem made up of three partial differential equations. One equation of the convection-dominated diffusion type for the temperature, and another two of the Stokes type for the normalized velocity and pressure. The approximate solution is obtained by a penalty finite volume method for the Stokes equation and a multistep upwind finite volume method for the convection-diffusion equation. Under suitable smoothness of the exact solution, error estimates in some discrete norms are derived.展开更多
文摘The problem of collecting solar energy and increasing its efficiency was studied in this paper. It was discovered that a 3DPV (three-dimensional photovoltaic) structures can generate greater amounts of measured energy densities than stationary flat PV panels (rate: 2 to 20). It has been found that the same structures work better not only because they are made in 3D but because PV panels do not have linear dependency on geometry. It seems that the conversion efficiency depends on the process of absorption of the solar energy, too, or in other words on the E. Yablonovich limit. The findings suggest that the quantity of material of solar panels may be reduced to generate the same amount of electricity.
文摘The author considers a thermal convection problem with infinite Prandtl number in two or three dimensions. The mathematical model of such problem is described as an initial boundary value problem made up of three partial differential equations. One equation of the convection-dominated diffusion type for the temperature, and another two of the Stokes type for the normalized velocity and pressure. The approximate solution is obtained by a penalty finite volume method for the Stokes equation and a multistep upwind finite volume method for the convection-diffusion equation. Under suitable smoothness of the exact solution, error estimates in some discrete norms are derived.