In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cel...In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cell spectral response on wavelengths for several modulation frequencies was evaluated by using solar cell internal quantum efficiency.The objective is to characterize the polycrystalline silicon in 3D. The effect of frequency modulation pulsation on the phase of internal quantum efficiency was presented as well as values of shunt and series resistance for various grains size values. The results show that the value of maximum internal quantum efficiency is about 50% with a wavelength of 0,82 nm and a frequency of 103 rad/s under monochromatic illumination.展开更多
A scheme is presented to realize the controlled teleportation of an unknown three dimensional(3D) two-particle state by using a non-maximally entangled two-particle state and a non-maximally entangled three-particle s...A scheme is presented to realize the controlled teleportation of an unknown three dimensional(3D) two-particle state by using a non-maximally entangled two-particle state and a non-maximally entangled three-particle state in the 3D space as the quantum channels,and one of the particles in the channels is used as the controlled particle.Analysis shows that when the quantum channels are of maximal entanglement,namely the channels are composed of a 3D Bell state and a 3D GHZ state,the total success probability of the controlled teleportation can reach 1.And this scheme can be expanded to control the teleportation of an unknown D-dimensional two-particle state.展开更多
文摘In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cell spectral response on wavelengths for several modulation frequencies was evaluated by using solar cell internal quantum efficiency.The objective is to characterize the polycrystalline silicon in 3D. The effect of frequency modulation pulsation on the phase of internal quantum efficiency was presented as well as values of shunt and series resistance for various grains size values. The results show that the value of maximum internal quantum efficiency is about 50% with a wavelength of 0,82 nm and a frequency of 103 rad/s under monochromatic illumination.
基金supported by the National High Technology Research and Development Program of China (Nos.2007AA030112 and2009AA032708)
文摘A scheme is presented to realize the controlled teleportation of an unknown three dimensional(3D) two-particle state by using a non-maximally entangled two-particle state and a non-maximally entangled three-particle state in the 3D space as the quantum channels,and one of the particles in the channels is used as the controlled particle.Analysis shows that when the quantum channels are of maximal entanglement,namely the channels are composed of a 3D Bell state and a 3D GHZ state,the total success probability of the controlled teleportation can reach 1.And this scheme can be expanded to control the teleportation of an unknown D-dimensional two-particle state.