随着三维集成阻变存储器(Resistive Random Access Memory,RRAM)集成度的不断提高,由焦耳热引起的热效应将会严重影响器件的稳定性、可靠性及寿命.因此,三维集成RRAM将面临最大的挑战是如何解决器件的热效应问题,而这种热效应现象伴随...随着三维集成阻变存储器(Resistive Random Access Memory,RRAM)集成度的不断提高,由焦耳热引起的热效应将会严重影响器件的稳定性、可靠性及寿命.因此,三维集成RRAM将面临最大的挑战是如何解决器件的热效应问题,而这种热效应现象伴随着器件特征尺寸的下降,热量分布对于RRAM器件的影响(如能耗、热稳定性等)变得尤为突出.特别是随着存储单元密度的不断提升,相邻单元之间的距离不断减小,邻近单元的热串扰将严重制约三维集成RRAM的发展和应用.本文基于电-热类比方法,建立了一种新的三维集成阻变存储器阵列的电-热紧凑模型;模型的准确性通过ANSYS物理场仿真软件进行了验证.该模型能够在Cadence中同时进行阵列电学特性和热学特性的仿真;本文提出的紧凑模型可以用于预测三维集成RRAM阵列中的热分布状况及分析热串扰.展开更多
文摘随着三维集成阻变存储器(Resistive Random Access Memory,RRAM)集成度的不断提高,由焦耳热引起的热效应将会严重影响器件的稳定性、可靠性及寿命.因此,三维集成RRAM将面临最大的挑战是如何解决器件的热效应问题,而这种热效应现象伴随着器件特征尺寸的下降,热量分布对于RRAM器件的影响(如能耗、热稳定性等)变得尤为突出.特别是随着存储单元密度的不断提升,相邻单元之间的距离不断减小,邻近单元的热串扰将严重制约三维集成RRAM的发展和应用.本文基于电-热类比方法,建立了一种新的三维集成阻变存储器阵列的电-热紧凑模型;模型的准确性通过ANSYS物理场仿真软件进行了验证.该模型能够在Cadence中同时进行阵列电学特性和热学特性的仿真;本文提出的紧凑模型可以用于预测三维集成RRAM阵列中的热分布状况及分析热串扰.