期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于2D转3D骨架的多特征融合实时动作识别 被引量:5
1
作者 任国印 吕晓琪 李宇豪 《激光与光电子学进展》 CSCD 北大核心 2021年第24期233-241,共9页
提出了一种基于二维(2D)转三维(3D)骨架的实时检测双分支子网络,可实现2D骨架关键点的3D估计和2D、3D骨架特征融合的人体3D动作识别。在检测过程采用OpenPose框架实时获取视频中人体骨架的2D关键点坐标。在2D转3D骨架估计过程中,设计了... 提出了一种基于二维(2D)转三维(3D)骨架的实时检测双分支子网络,可实现2D骨架关键点的3D估计和2D、3D骨架特征融合的人体3D动作识别。在检测过程采用OpenPose框架实时获取视频中人体骨架的2D关键点坐标。在2D转3D骨架估计过程中,设计了一种输入为难样本且具有反馈功能的孪生网络。在3D动作识别过程中设计了一种2D、3D骨架特征双分支孪生网络,以完成3D姿态识别任务。在Human3.6M数据集上训练3D骨架估计网络,在基于欧拉变换的NTU RGB+D 60多视角增强数据集上训练骨架动作识别网络,最终得到的3D骨架动作识别交叉受试者准确率为88.2%,交叉视野准确率为95.6%。实验结果表明,该方法对3D骨架的预测精度较高,且具有实时反馈能力,可适用于实时监控中的动作识别。 展开更多
关键词 图像处理 三维骨架估计 人体动作识别 多分支网络 多特征融合
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部