近些年,带有多项式阻尼项的Navier-Stokes方程被推导且得到研究,并且得出了很多重要结论。本文证明了带有指数阻尼项α(eβ| u |2−1)u(α>0,β>0)的三维Navier-Stokes方程在有界区域上整体吸引子的存在性。In recent years, the N...近些年,带有多项式阻尼项的Navier-Stokes方程被推导且得到研究,并且得出了很多重要结论。本文证明了带有指数阻尼项α(eβ| u |2−1)u(α>0,β>0)的三维Navier-Stokes方程在有界区域上整体吸引子的存在性。In recent years, the Navier-Stokes equations with polynomial damping have been derived and studied, and many important conclusions have been drawn. In this paper, we show that the three-dimensional Navier-Stokes equations with exponential damping α(eβ| u |2−1)u(α>0,β>0)have global attractors in the bounded domain.展开更多
通过在分数阶拉普拉斯耗散的正则化效应和 Coriolis 力的色散效应之间建立新的平衡,我们证明了三维广义 Navier-Stokes-Coriolis 方程组柯西问题在 Besov 空间中的整体适定性。特别地,当旋转速度足够快时,允许初速度任意大。By striking...通过在分数阶拉普拉斯耗散的正则化效应和 Coriolis 力的色散效应之间建立新的平衡,我们证明了三维广义 Navier-Stokes-Coriolis 方程组柯西问题在 Besov 空间中的整体适定性。特别地,当旋转速度足够快时,允许初速度任意大。By striking new balances between the regularizing effects of the fractional Lapla-cian dissipation and the dispersive effects of Coriolis force, we prove the global well-posedness of Cauchy problem for the three-dimensional generalized Navier-Stokes-Coriolis equations in Besov spaces. Particularly, it is shown that initial velocity can bearbitrarily large provided that the speed of rotation is sufficiently high.展开更多
文摘近些年,带有多项式阻尼项的Navier-Stokes方程被推导且得到研究,并且得出了很多重要结论。本文证明了带有指数阻尼项α(eβ| u |2−1)u(α>0,β>0)的三维Navier-Stokes方程在有界区域上整体吸引子的存在性。In recent years, the Navier-Stokes equations with polynomial damping have been derived and studied, and many important conclusions have been drawn. In this paper, we show that the three-dimensional Navier-Stokes equations with exponential damping α(eβ| u |2−1)u(α>0,β>0)have global attractors in the bounded domain.
文摘通过在分数阶拉普拉斯耗散的正则化效应和 Coriolis 力的色散效应之间建立新的平衡,我们证明了三维广义 Navier-Stokes-Coriolis 方程组柯西问题在 Besov 空间中的整体适定性。特别地,当旋转速度足够快时,允许初速度任意大。By striking new balances between the regularizing effects of the fractional Lapla-cian dissipation and the dispersive effects of Coriolis force, we prove the global well-posedness of Cauchy problem for the three-dimensional generalized Navier-Stokes-Coriolis equations in Besov spaces. Particularly, it is shown that initial velocity can bearbitrarily large provided that the speed of rotation is sufficiently high.