This paper proposes a new non-intrusive trigonometric polynomial approximation interval method for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions.Thi...This paper proposes a new non-intrusive trigonometric polynomial approximation interval method for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions.This method provides tighter solution ranges compared to the existing approximation interval methods.We consider trigonometric approximation polynomials of three types:both cosine and sine functions,the sine function,and the cosine function.Thus,special interval arithmetic for trigonometric function without overestimation can be used to obtain interval results.The interval method using trigonometric approximation polynomials with a cosine functional form exhibits better performance than the existing Taylor interval method and Chebyshev interval method.Finally,two typical numerical examples with nonlinearity are applied to demonstrate the effectiveness of the proposed method.展开更多
A partition-of-unity (PU) based "FE-Meshfree" three-node triangular element (Trig3-RPIM) was recently developed for linear elastic problems. This Trig3-RPIM element employs hybrid shape functions that combine th...A partition-of-unity (PU) based "FE-Meshfree" three-node triangular element (Trig3-RPIM) was recently developed for linear elastic problems. This Trig3-RPIM element employs hybrid shape functions that combine the shape functions of three-node triangular element (Trig3) and radial-polynomial basis functions for the purpose of synergizing the merits of both finite element method and meshfree method. Although Trig3-RPIM element is capable of obtaining higher accuracy and convergence rate than the Trig3 element and four-node iso-parametric quadrilateral element without adding extra nodes or degrees of freedom (DOFs), the nodal stress field through Trig3-RP1M element is not continuous and extra stress smooth operations are still needed in the post processing stage. To further improve the property of Trig3-RPIM element, a new PU-based triangular element with continuous nodal stress, called Trig3-RPIMcns, is developed. Numerical examples including several linear, free vibration and forced vibration test problems, have confirmed the correctness and feasibility of the proposed Trig3-RPIMcns element.展开更多
文摘This paper proposes a new non-intrusive trigonometric polynomial approximation interval method for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions.This method provides tighter solution ranges compared to the existing approximation interval methods.We consider trigonometric approximation polynomials of three types:both cosine and sine functions,the sine function,and the cosine function.Thus,special interval arithmetic for trigonometric function without overestimation can be used to obtain interval results.The interval method using trigonometric approximation polynomials with a cosine functional form exhibits better performance than the existing Taylor interval method and Chebyshev interval method.Finally,two typical numerical examples with nonlinearity are applied to demonstrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(Grant Nos.51609240,11572009&51538001)and the National Basic Research Program of China(Grant No.2014CB047100)
文摘A partition-of-unity (PU) based "FE-Meshfree" three-node triangular element (Trig3-RPIM) was recently developed for linear elastic problems. This Trig3-RPIM element employs hybrid shape functions that combine the shape functions of three-node triangular element (Trig3) and radial-polynomial basis functions for the purpose of synergizing the merits of both finite element method and meshfree method. Although Trig3-RPIM element is capable of obtaining higher accuracy and convergence rate than the Trig3 element and four-node iso-parametric quadrilateral element without adding extra nodes or degrees of freedom (DOFs), the nodal stress field through Trig3-RP1M element is not continuous and extra stress smooth operations are still needed in the post processing stage. To further improve the property of Trig3-RPIM element, a new PU-based triangular element with continuous nodal stress, called Trig3-RPIMcns, is developed. Numerical examples including several linear, free vibration and forced vibration test problems, have confirmed the correctness and feasibility of the proposed Trig3-RPIMcns element.