期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
三角形数阵换序求和公式的一些应用 被引量:3
1
作者 张国铭 《高等数学研究》 2001年第2期22-24,38,共4页
关键词 TAYLOR展式 部分和 三角形数阵 换序求和公式
下载PDF
特殊三角形数阵求计算规律研究
2
作者 周雍涵 《神州》 2016年第2期155-155,共1页
数学确实是个最富有魅力的学科。它所蕴含的美妙和奇趣,是其他任何学科都不能相比的。数学的美,质朴,深沉,令人赏心悦目;数学的妙,鬼斧神工,令人拍案叫绝!数学的趣,醇浓如酒,令人神魂颠倒。在初中数学学习的过程中,“规律题... 数学确实是个最富有魅力的学科。它所蕴含的美妙和奇趣,是其他任何学科都不能相比的。数学的美,质朴,深沉,令人赏心悦目;数学的妙,鬼斧神工,令人拍案叫绝!数学的趣,醇浓如酒,令人神魂颠倒。在初中数学学习的过程中,“规律题”指的是在已知条件中会有一些数字,也可能是一些图形,学生需要做的就是探索出存在于这其中潜在的规律,并可以熟练运用自己发现的规律,去解答相应的问题。本研究三角形数阵求和规律问题,运用了高中数学等比数列的求和公式进行推导,并且这个三角形数阵内所有数的和与这个“三角形”边长的值的比值一定的,他可以简化对“塔式数列”的计算,同时这对我们研究三角形数阵是一个极大的突破,这也许为生活中需要大量计算的工作大大减轻负担,在这个问题的研究过程中有和较大的突破。 展开更多
关键词 三角形数阵 求和 等比数列求和公式 比值
下载PDF
Upper Triangular Matrix of Lie Algebra and a New Discrete Integrable Coupling System
3
作者 YU Fa-Jun ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第3期393-396,共4页
The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice ... The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy. It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems. 展开更多
关键词 upper triangular matrix Lie algebra integrable coupling system
下载PDF
Lie Triple Derivations of the Lie Algebra of Dominant Block Upper Triangular Matrices
4
作者 Prakash Ghimire Huajun Huang 《Algebra Colloquium》 SCIE CSCD 2018年第3期475-492,共18页
Let N be the Lie algebra of all n x n dominant block upper triangular matrices over a field F. In this paper, we explicitly describe all Lie triple derivations of N when char(F) ≠ 2. As an application, we character... Let N be the Lie algebra of all n x n dominant block upper triangular matrices over a field F. In this paper, we explicitly describe all Lie triple derivations of N when char(F) ≠ 2. As an application, we characterize Lie derivations of N when char(F) ≠ 2. 展开更多
关键词 Lie triple derivation block upper triangular matrix Lie algebra
原文传递
An element decomposition method with variance strain stabilization
5
作者 CUI XiangYang LIU PengWei LI GuangYao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第7期57-66,共10页
An element decomposition method with variance strain stabilization(EDM-VSS) is proposed. In the present EDM-VSS, the quadrilateral element is first divided into four sub-triangular cells, and the local strains in sub-... An element decomposition method with variance strain stabilization(EDM-VSS) is proposed. In the present EDM-VSS, the quadrilateral element is first divided into four sub-triangular cells, and the local strains in sub-triangular cells are obtained using linear interpolation function. For each quadrilateral element, the strain of the whole quadrilateral is the weighted average value of the local strains, which means only one integration point is adopted to construct the stiffness matrix. The stabilization item of the stiffness matrix is constructed by variance of the local strains, which can eliminate the instability of the one-point integration formulation and largely increase the accuracy of the element. Compared with conventional full integration quadrilateral element, the EDM-VSS achieves more accurate results and expends much lower computational cost. More importantly, as no mapping or coordinate transformation is involved in the present EDM-VSS, the restriction on the conventional quadrilateral elements can be removed and problem domain can be discretized in more flexible ways. To verify the accuracy and stability of the present formulation, a number of numerical examples are studied to demonstrate the efficiency of the present EDM-VSS. 展开更多
关键词 numerical methods element decomposition method variance strain stabilization one-point integration quadrilateralelement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部