Geological disasters on the superficial seafloor were revealed in geological investigation on the Yellow River subaqueous delta. Combined with dynamic triaxial tests and wave flume experiments, occurring conditions an...Geological disasters on the superficial seafloor were revealed in geological investigation on the Yellow River subaqueous delta. Combined with dynamic triaxial tests and wave flume experiments, occurring conditions and forming patterns of liquefaction as well as motion of the liquefied soil were explained in this paper. Based on the viewpoint that the geological disasters were formed due to silty soil liquefaction under storm waves, re-stratification issue of the superficial stratum was analyzed. Movement of the liquefied soil agreed with the wave, leading to differentiation of the soil particles. Research issues in respect of geological, environment and engineering of storm-induced liquefaction were also discussed.展开更多
Feiyantan was the discharge area of Diaokou River distributary of the Yellow River during the period of 1964 to 1976. The coastal erosion feature and morphological evolution at the Feiyantan coast are studied in the l...Feiyantan was the discharge area of Diaokou River distributary of the Yellow River during the period of 1964 to 1976. The coastal erosion feature and morphological evolution at the Feiyantan coast are studied in the light of the topography and section depth, and the corresponding dynamics of wave and current. Results indicate that the protruding topography left after the Diaokou River distributary was abandoned is the main cause of strong coastal erosion. Further research suggests that waves start up the sediment and the tidal current transports it, and the waves and tidal current are combined to be the dominant dynamic mechanism of coastal erosion, in which the tidal residual current takes and transports the sediment outward, thus causing the sediment to wane in the coast.展开更多
Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore ...Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads,in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated,then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer,while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors,respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage.展开更多
The aim of this study was to explore the spatial distribution and submerged scope for storm surge in the Pearl River Delta(PRD) region.Based on the data of storm surges in the PRD region in the past 30 years,the retur...The aim of this study was to explore the spatial distribution and submerged scope for storm surge in the Pearl River Delta(PRD) region.Based on the data of storm surges in the PRD region in the past 30 years,the return periods of 12 tide-gauge stations for storm surges were calculated separately with the methods of Gumbel and Pearson-III.The data of another six tide-gauge stations in Guangdong Coast was quoted to depict the overall features of storm surges in Guangdong.Using least-square method,the spatial distribution models of storm surges in different return periods were established to reveal the distribution rule of the set-up values of storm surges.The spatial distribution curves of storm surges in different return periods in the PRD Region were drawn up based on the models and the terrain of Guangdong Coast.According to the curves,the extreme set-up values of storm surges in 1 000,100,10 a return periods were determined on each spot of Guangdong Coast.Applying the spatial analysis technology of ArcGIS,with the topography data of the PRD Region,the submerged scopes of flood caused by storm surge in 1 000,100,10 a return periods were drawn up.The loss caused by storm surges was estimated.Results showed that the storm surges and the topography of PRD region jointly led to the serious flood in the PRD region.This assessment would be useful for the planning and design department to make decision and provide government scientific basis for storm surge prediction,coastal engineering designing and the prevention of storm surge disaster.展开更多
Reservoir sedimentation is an unsolved problem.In this paper,based on measured data,theoretical analysis and numerical computations,we prove that a proportion of the sediment coarser than 0.1 mm(CS) is sorted and depo...Reservoir sedimentation is an unsolved problem.In this paper,based on measured data,theoretical analysis and numerical computations,we prove that a proportion of the sediment coarser than 0.1 mm(CS) is sorted and deposited in specific reaches in the upper backwaters or in run-of-river reservoirs.The ratio of CS is usually small but it impacts the slope of deposition delta greatly and raises the backwater in later stages for a river shaped reservoir(RSR).Based on these facts,we propose to remove such CS from a fixed basin(FB) in the upper backwater by dredging and we prove that the removal of CS is effective in reducing sediment deposition and in preserving the long-term capacity of reservoirs.A numerical model computation of the Three Gorges Project(TGP) reservoir indicates that dredging 30×106-50×106 t/a of CS could reduce 20% total deposition by the end of 100th year,so that the slope of deposition can be slowed down by 25%-30%.This would be remarkable for a long extended RSR.This method of removing CS can also be applied to the Xiaolangdi reservoir(XLD) on the Yellow River(YR) to not only limit reservoir deposition but also filter out the CS from entering the Lower Yellow River(LYR) to slow down the rise of the perched LYR.It provides a new alternative to postpone the continuous siltation of the LYR.展开更多
基金supported by National Science Foundation of China (No. 41076021)
文摘Geological disasters on the superficial seafloor were revealed in geological investigation on the Yellow River subaqueous delta. Combined with dynamic triaxial tests and wave flume experiments, occurring conditions and forming patterns of liquefaction as well as motion of the liquefied soil were explained in this paper. Based on the viewpoint that the geological disasters were formed due to silty soil liquefaction under storm waves, re-stratification issue of the superficial stratum was analyzed. Movement of the liquefied soil agreed with the wave, leading to differentiation of the soil particles. Research issues in respect of geological, environment and engineering of storm-induced liquefaction were also discussed.
文摘Feiyantan was the discharge area of Diaokou River distributary of the Yellow River during the period of 1964 to 1976. The coastal erosion feature and morphological evolution at the Feiyantan coast are studied in the light of the topography and section depth, and the corresponding dynamics of wave and current. Results indicate that the protruding topography left after the Diaokou River distributary was abandoned is the main cause of strong coastal erosion. Further research suggests that waves start up the sediment and the tidal current transports it, and the waves and tidal current are combined to be the dominant dynamic mechanism of coastal erosion, in which the tidal residual current takes and transports the sediment outward, thus causing the sediment to wane in the coast.
基金Supported by the National Natural Science Foundation of China(No.41072216)the Science and Technology Development Program of Shandong Province(No.2014GGX104007)
文摘Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads,in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated,then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer,while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors,respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage.
基金Supported by National Key Technology R&D Program of China(2006BAD20B05)
文摘The aim of this study was to explore the spatial distribution and submerged scope for storm surge in the Pearl River Delta(PRD) region.Based on the data of storm surges in the PRD region in the past 30 years,the return periods of 12 tide-gauge stations for storm surges were calculated separately with the methods of Gumbel and Pearson-III.The data of another six tide-gauge stations in Guangdong Coast was quoted to depict the overall features of storm surges in Guangdong.Using least-square method,the spatial distribution models of storm surges in different return periods were established to reveal the distribution rule of the set-up values of storm surges.The spatial distribution curves of storm surges in different return periods in the PRD Region were drawn up based on the models and the terrain of Guangdong Coast.According to the curves,the extreme set-up values of storm surges in 1 000,100,10 a return periods were determined on each spot of Guangdong Coast.Applying the spatial analysis technology of ArcGIS,with the topography data of the PRD Region,the submerged scopes of flood caused by storm surge in 1 000,100,10 a return periods were drawn up.The loss caused by storm surges was estimated.Results showed that the storm surges and the topography of PRD region jointly led to the serious flood in the PRD region.This assessment would be useful for the planning and design department to make decision and provide government scientific basis for storm surge prediction,coastal engineering designing and the prevention of storm surge disaster.
基金supported by the State Key Laboratory of Hydroscience and Engineering, Tsinghua University (Grant No. 2011-KY-2)the Independent Research Plans of Tsinghua University (Grant No. 20101081780)
文摘Reservoir sedimentation is an unsolved problem.In this paper,based on measured data,theoretical analysis and numerical computations,we prove that a proportion of the sediment coarser than 0.1 mm(CS) is sorted and deposited in specific reaches in the upper backwaters or in run-of-river reservoirs.The ratio of CS is usually small but it impacts the slope of deposition delta greatly and raises the backwater in later stages for a river shaped reservoir(RSR).Based on these facts,we propose to remove such CS from a fixed basin(FB) in the upper backwater by dredging and we prove that the removal of CS is effective in reducing sediment deposition and in preserving the long-term capacity of reservoirs.A numerical model computation of the Three Gorges Project(TGP) reservoir indicates that dredging 30×106-50×106 t/a of CS could reduce 20% total deposition by the end of 100th year,so that the slope of deposition can be slowed down by 25%-30%.This would be remarkable for a long extended RSR.This method of removing CS can also be applied to the Xiaolangdi reservoir(XLD) on the Yellow River(YR) to not only limit reservoir deposition but also filter out the CS from entering the Lower Yellow River(LYR) to slow down the rise of the perched LYR.It provides a new alternative to postpone the continuous siltation of the LYR.