The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagati...The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagation constitutive relation of rock under triaxial stress condition is analyzed at last.展开更多
Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory...Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory and method is proposed to systematically evaluate the risk of water inrush in karst tunnels.Its innovation mainly includes that the value of evaluation index is an interval rather than a certain value;the single-index attribute evaluation model is improved non-linearly based on the idea of normal distribution;the synthetic attribute interval analysis method based on improved intuitionistic fuzzy theory is proposed.The TFN-AHP method is proposed to analyze the weight of evaluation index.By analyzing geological factors and engineering factors in tunnel zone,a multi-grade hierarchical index system for tunnel water inrush risk assessment is established.The proposed method is applied to ventilation incline of Xiakou tunnel,and its rationality and practicability is verified by comparison with field situation and evaluation results of other methods.In addition,the results evaluated by this method,which considers that water inrush is a complex non-linear system and the geological conditions have spatial variability,are more accurate and reliable.And it has good applicability in solving the problem of certain and uncertain problem.展开更多
Selective recognition of adenosine 5'-triphosphate (ATP) is of great significance owing to its indispensable functions to organisms. Also, it is a challenging task because other nucleosides triphosphate hold the sa...Selective recognition of adenosine 5'-triphosphate (ATP) is of great significance owing to its indispensable functions to organisms. Also, it is a challenging task because other nucleosides triphosphate hold the same triphosphate group and structurally planar bases as ATP. It is known that metal-organic frameworks (MOFs) are a new type of sensing material. In this work, highly selective recognition of ATP against other nucleosides triphosphate is successfully achieved with a luminescent MOF of [Zn(BDC)(H2O)2]n (BDC2- = 1,4-benzenedicarboxylate). [Zn(BDC)(H2O)2]n dispersed in water shows a remarkable redshift of the emission wavelength upon addition of ATP, while cytidine 5'-triphosphate (CTP), uridine 5'-triphosphate (UTP) and guanosine 5'-triphosphate (GTP), as well as some inorganic anions such as P2074- or PO43- can't induce such spectral change as ATP. 1H NMR, 31p NMR and Raman spectra indicate that both π-π stacking interactions and the coordination of Zn(II) with adenine and the phosphate group are involved in the interaction of [Zn(BDC)(H2O)2],, with ATP. In addition, the experimental results showed that the redshift extent of the emission wavelength of [Zn(BDC)(HzO)2]n has the linear relation- ship with the concentration of ATP in the range of 0.3-1.8 mmol/L. Based on this, the detection of ATP content in the sample of ATP injection was made with satisfactory results. This system pioneers the application of MOFs in the recognition of nucle- otides, and testifies that the participation of base in the recognition process can improve the selectivity against the other nucleotides.展开更多
Nucleic acid amplification test is a reliable method for primary human immunodeficiency virus (HIV) infection diagnosis. Herein, a novel fluorescent method for sequence-specific recognition of DNA fragment of HIV-1 ...Nucleic acid amplification test is a reliable method for primary human immunodeficiency virus (HIV) infection diagnosis. Herein, a novel fluorescent method for sequence-specific recognition of DNA fragment of HIV-1 was established based upon nicking-assisted strand displacement amplification (SDA) and triplex DNA. In the presence of target dsDNA, nicking-assisted SDA process generated a lot of ssDNA, which hybridized with molecular beacon to produce signal. The fluorescence intensity was proportional to the concentration of target dsDNA within the range from 5 to 1000 pmol/L, with a detection limit of 1.4 pmol/L. Moreover, it successfully distinguished target dsDNA from the nucleic acid extractive of human blood. Thus this method has the merit of high sensitivity, and it is suitable for sequence-specific recognition of target dsDNA in complex matrices, which made it a potential application in diagnosis of acquired immunodeflciency syndrome (AIDS) in the future.展开更多
文摘The advanced computerized tomography is applied to study the damage propagation of rock. The real time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The damage propagation constitutive relation of rock under triaxial stress condition is analyzed at last.
基金Project(51722904)supported by the National Science Fund for Excellent Young Scholars,ChinaProject(51679131)supported by the National Natural Science Foundation of China+2 种基金Project(2019JZZY010601)supported by the Shandong Provincial Key Research and Development Program(Major Scientific and Technological Innovation Project),ChinaProject(KJ1712304)supported by the Science and Technology Research Program of Chongqing Municipal Education Commission,ChinaProject(2016XJQN13)supported by the Yangtze Normal University Research Project,China
文摘Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory and method is proposed to systematically evaluate the risk of water inrush in karst tunnels.Its innovation mainly includes that the value of evaluation index is an interval rather than a certain value;the single-index attribute evaluation model is improved non-linearly based on the idea of normal distribution;the synthetic attribute interval analysis method based on improved intuitionistic fuzzy theory is proposed.The TFN-AHP method is proposed to analyze the weight of evaluation index.By analyzing geological factors and engineering factors in tunnel zone,a multi-grade hierarchical index system for tunnel water inrush risk assessment is established.The proposed method is applied to ventilation incline of Xiakou tunnel,and its rationality and practicability is verified by comparison with field situation and evaluation results of other methods.In addition,the results evaluated by this method,which considers that water inrush is a complex non-linear system and the geological conditions have spatial variability,are more accurate and reliable.And it has good applicability in solving the problem of certain and uncertain problem.
基金the National Natural Science Foundation of China(21175109)for the financial support
文摘Selective recognition of adenosine 5'-triphosphate (ATP) is of great significance owing to its indispensable functions to organisms. Also, it is a challenging task because other nucleosides triphosphate hold the same triphosphate group and structurally planar bases as ATP. It is known that metal-organic frameworks (MOFs) are a new type of sensing material. In this work, highly selective recognition of ATP against other nucleosides triphosphate is successfully achieved with a luminescent MOF of [Zn(BDC)(H2O)2]n (BDC2- = 1,4-benzenedicarboxylate). [Zn(BDC)(H2O)2]n dispersed in water shows a remarkable redshift of the emission wavelength upon addition of ATP, while cytidine 5'-triphosphate (CTP), uridine 5'-triphosphate (UTP) and guanosine 5'-triphosphate (GTP), as well as some inorganic anions such as P2074- or PO43- can't induce such spectral change as ATP. 1H NMR, 31p NMR and Raman spectra indicate that both π-π stacking interactions and the coordination of Zn(II) with adenine and the phosphate group are involved in the interaction of [Zn(BDC)(H2O)2],, with ATP. In addition, the experimental results showed that the redshift extent of the emission wavelength of [Zn(BDC)(HzO)2]n has the linear relation- ship with the concentration of ATP in the range of 0.3-1.8 mmol/L. Based on this, the detection of ATP content in the sample of ATP injection was made with satisfactory results. This system pioneers the application of MOFs in the recognition of nucle- otides, and testifies that the participation of base in the recognition process can improve the selectivity against the other nucleotides.
基金supported by the National Natural Science Foundation of China(21375153)
文摘Nucleic acid amplification test is a reliable method for primary human immunodeficiency virus (HIV) infection diagnosis. Herein, a novel fluorescent method for sequence-specific recognition of DNA fragment of HIV-1 was established based upon nicking-assisted strand displacement amplification (SDA) and triplex DNA. In the presence of target dsDNA, nicking-assisted SDA process generated a lot of ssDNA, which hybridized with molecular beacon to produce signal. The fluorescence intensity was proportional to the concentration of target dsDNA within the range from 5 to 1000 pmol/L, with a detection limit of 1.4 pmol/L. Moreover, it successfully distinguished target dsDNA from the nucleic acid extractive of human blood. Thus this method has the merit of high sensitivity, and it is suitable for sequence-specific recognition of target dsDNA in complex matrices, which made it a potential application in diagnosis of acquired immunodeflciency syndrome (AIDS) in the future.