An advanced discrete element servomechanism that can simultaneously and independently control the evolution equations of six stress and strain components without introducing severe stress concentration is implemented....An advanced discrete element servomechanism that can simultaneously and independently control the evolution equations of six stress and strain components without introducing severe stress concentration is implemented.Such a comprehensive series of discrete element method simulations of both drained and undrained behavior of transversely isotropic sandy soils are successfully conducted in the true triaxial setting.During the simulation process,the evolution patterns of the load-bearing structure of the granular specimen are tracked using a contact-normal-based fabric tensor.The simulation results show that sandy soils exhibit more significant non-coaxiality between the loading direction and the major principal direction of the fabric tensor under extension than under compression.Therefore,the fabric of the sandy soils under extension has a stronger tendency to evolve toward the loading direction than that under compression,causing a more significant disturbance to the load-bearing structure.Consequently,compared with the extension loading condition,the transversely isotropic specimen under compression exhibits a higher shear strength and stronger dilatancy under drained conditions and a stronger liquefaction resistance under undrained conditions.展开更多
Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,n...Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.展开更多
A data processing method was proposed for eliminating the end restraint in triaxial tests of soil. A digital image processing method was used to calculate the local deformations and local stresses for any region on th...A data processing method was proposed for eliminating the end restraint in triaxial tests of soil. A digital image processing method was used to calculate the local deformations and local stresses for any region on the surface of triaxial soil specimens. The principle and implementation of this digital image processing method were introduced as well as the calculation method for local mechanical properties of soil specimens. Comparisons were made between the test results calculated by the data from both the entire specimen and local regions, and it was found that the deformations were more uniform in the middle region compared with the entire specimen. In order to quantify the nonuniform characteristic of deformation, the non-uniformity coefficients of strain were defined and calculated. Traditional and end-lubricated triaxial tests were conducted under the same condition to investigate the effects of using local region data for deformation calculation on eliminating the end restraint of specimens. After the statistical analysis of all test results, it was concluded that for the tested soil specimen with the size of 39.1 mm × 80 ram, the utilization of the middle 35 mm region of traditional specimens in data processing had a better effect on eliminating end restraint compared with end lubrication. Furthermore, the local data analysis in this paper was validated through the comparisons with the test results from other researchers.展开更多
A 3D bounding surface model is established for rockfill materials,which can be applied to appropriately predict the deformation and the stabilization of rockfill dams.Firstly,an associated plastic flow rule for rockfi...A 3D bounding surface model is established for rockfill materials,which can be applied to appropriately predict the deformation and the stabilization of rockfill dams.Firstly,an associated plastic flow rule for rockfill materials is investigated based on the elaborate data from the large-style triaxial compression tests and the true triaxial tests.Secondly,the constitutive equations of the 3D bounding surface model are established by several steps.These steps include the bounding surface incorporating the general nonlinear strength criterion,stress-dilatancy equations,the evolution of the bounding surface and the bounding surface plasticity.Finally,the 3D bounding surface model is used to predict the mechanical behaviors of rockfill materials from the large-style triaxial compression tests and the true triaxial tests.Consequently,the proposed 3D bounding surface model can well capture such behaviors of rockfill materials as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion in both two-and three-dimensional stress spaces.展开更多
基金The National Natural Science of China(No.52208366)the Department of Science and Technology of Hubei Province(No.2023AFB578).
文摘An advanced discrete element servomechanism that can simultaneously and independently control the evolution equations of six stress and strain components without introducing severe stress concentration is implemented.Such a comprehensive series of discrete element method simulations of both drained and undrained behavior of transversely isotropic sandy soils are successfully conducted in the true triaxial setting.During the simulation process,the evolution patterns of the load-bearing structure of the granular specimen are tracked using a contact-normal-based fabric tensor.The simulation results show that sandy soils exhibit more significant non-coaxiality between the loading direction and the major principal direction of the fabric tensor under extension than under compression.Therefore,the fabric of the sandy soils under extension has a stronger tendency to evolve toward the loading direction than that under compression,causing a more significant disturbance to the load-bearing structure.Consequently,compared with the extension loading condition,the transversely isotropic specimen under compression exhibits a higher shear strength and stronger dilatancy under drained conditions and a stronger liquefaction resistance under undrained conditions.
基金Project(2011J01308) supported by the Natural Science Foundation of Fujian Province,China
文摘Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.
基金Supported by Major State Basic Research Development Program of China("973" Program,No.2010CB731502)
文摘A data processing method was proposed for eliminating the end restraint in triaxial tests of soil. A digital image processing method was used to calculate the local deformations and local stresses for any region on the surface of triaxial soil specimens. The principle and implementation of this digital image processing method were introduced as well as the calculation method for local mechanical properties of soil specimens. Comparisons were made between the test results calculated by the data from both the entire specimen and local regions, and it was found that the deformations were more uniform in the middle region compared with the entire specimen. In order to quantify the nonuniform characteristic of deformation, the non-uniformity coefficients of strain were defined and calculated. Traditional and end-lubricated triaxial tests were conducted under the same condition to investigate the effects of using local region data for deformation calculation on eliminating the end restraint of specimens. After the statistical analysis of all test results, it was concluded that for the tested soil specimen with the size of 39.1 mm × 80 ram, the utilization of the middle 35 mm region of traditional specimens in data processing had a better effect on eliminating end restraint compared with end lubrication. Furthermore, the local data analysis in this paper was validated through the comparisons with the test results from other researchers.
基金supported by the National Natural Science Foundation for Distinguished Young Scholar (Grant No. 50825901)the Key Project of National Natural Science Foundation of China and Yalongjiang Hydro-electric Development Joint Research Fund (Grant No. 50639050)+2 种基金the Public Service Sector R&D Project of Ministry of Water Resource of China(Grant No. 200801014)the Fundamental Research Funds for the Central Universities (Grant No. 2010B15014)Scientific Innovation Research Scheme for Jiangsu University Graduate (Grant No. CX10B_207Z)
文摘A 3D bounding surface model is established for rockfill materials,which can be applied to appropriately predict the deformation and the stabilization of rockfill dams.Firstly,an associated plastic flow rule for rockfill materials is investigated based on the elaborate data from the large-style triaxial compression tests and the true triaxial tests.Secondly,the constitutive equations of the 3D bounding surface model are established by several steps.These steps include the bounding surface incorporating the general nonlinear strength criterion,stress-dilatancy equations,the evolution of the bounding surface and the bounding surface plasticity.Finally,the 3D bounding surface model is used to predict the mechanical behaviors of rockfill materials from the large-style triaxial compression tests and the true triaxial tests.Consequently,the proposed 3D bounding surface model can well capture such behaviors of rockfill materials as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion in both two-and three-dimensional stress spaces.