The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-orde...The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51325502 and 51405175)the National Basic Research Program of China("973"Project)(Grant No.2011CB706804)the National Science and Technology Major Projects of China(Grant No.2012ZX04001-012-01-05)
文摘The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.