期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Promoting role of Ru species on Ir-Fe/BN catalyst in 1,2-diols hydrogenolysis to secondary alcohols
1
作者 Ben Liu Yoshinao Nakagawa +1 位作者 Mizuho Yabushita Keiichi Tomishige 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期89-102,共14页
Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with n... Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with noble metal is highly promising yet still under investigation.Herein,Ru was found as an effective modifier among the screened noble metals(Ru,Pt,Rh,Pd,Au,and Ag)for Ir-Fe/BN(Ir=5 wt%,Fe/Ir=0.25)catalyst in terminal C−O hydrogenolysis of 1,2-butanediol(1,2-BuD)to 2-butanol(2-BuOH).Only trace amount of Ru(up to 0.5 wt%)was effective in terms of high 2-BuOH selectivity(>60%)and activity(about twice).Larger amount of Ru species(3 wt%)highly enhanced the activity but gave low selectivity to 2-BuOH with by-products of terminal C−C bond scission.Optimized catalyst(Ru(0.5)-Ir-Fe/BN)was reusable at least 4 times and gave moderate 2-BuOH yield(47%)in hydrogenolysis of 1,2-BuD.The promoting effect of Ru addition(0.5 wt%)to Ir-Fe/BN on hydrogenolysis of various alcohols was also confirmed.Combining catalytic tests with various characterizations,the promotion mechanism of Ru species in trimetallic catalysts was clarified.The Ru species in Ru(0.5)-Ir-Fe/BN form alloy with Ir and are enriched at the interface with BN surface,and direct interaction between Ru and Fe was not necessary in Ru-Ir-Fe alloy.The interface of Ir and Fe on the surface of Ir-Fe alloy may work as active sites for 1,2-diols to secondary alcohols via direct C−O hydrogenolysis,in which Ru-modified Ir activates H_(2) to form hydride-like species.The activity of Ru species in C−C bond cleavage was highly suppressed due to the direct interaction with Ir species and less exposed to substrate.Larger loading amount of Ru species(3 wt%)led to the formation Ru-rich trimetallic alloy,which further works as active sites for C−C bond scission. 展开更多
关键词 Biomass-based polyols Secondary alcohol HYDRODEOXYGENATION Trimetallic alloy Boron nitride
下载PDF
AgAuPd/meso-Co_3O_4: High-performance catalysts for methanol oxidation
2
作者 Jun Yang Yuxi Liu +4 位作者 Jiguang Deng Xingtian Zhao Kunfeng Zhang Zhuo Han Hongxing Dai 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期837-848,共12页
The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods,respectively.Various techniques were used to characterize physicochemic... The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods,respectively.Various techniques were used to characterize physicochemical properties of these materials.Catalytic performance of the samples was evaluated for methanol combustion.The cubically crystallized Co3O4 support displayed a three-dimensionally ordered mesoporous structure.The supported noble metal nanoparticles(NPs)possessed a surface area of 115.125 m^2/g,with the noble NPs(average size=2.8.4.5 nm)being uniformly dispersed on the surface of meso-Co3O4.Among all of the samples,0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 showed the highest catalytic activity(T50%=100℃and T90%=112℃at a space velocity of 80000 mL(g^–1 h^–1).The partial deactivation of the 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 sample due to water vapor or carbon dioxide introduction was reversible.It is concluded that the good catalytic performance of 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 was associated with its highly dispersed Ag0.75Au1.14Pd alloy NPs,high adsorbed oxygen species concentration,good low-temperature reducibility,and strong interaction between Ag0.75Au1.14Pd alloy NPs and meso-Co3O4. 展开更多
关键词 Volatile organic compound Mesoporous cobalt oxide Supported noble metal catalyst AgAuPd alloy nanoparticle Methanol oxidation
下载PDF
Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink 被引量:15
3
作者 WANG Lei LIU Jing 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第9期1721-1728,共8页
Conventional 3D metal printings are generally time-consuming as well as lacking of high performance printable inks.From an alternative way,here we proposed the method of liquid phase 3D printing for quickly making con... Conventional 3D metal printings are generally time-consuming as well as lacking of high performance printable inks.From an alternative way,here we proposed the method of liquid phase 3D printing for quickly making conductive metal objects.Through introducing metal alloys whose melting point is slightly above room temperature as printing inks,several representative structures spanning from one,two and three dimension to more complex patterns were demonstrated to be quickly fabricated.Compared with the air-cooling in a conventional 3D printing,the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating the target metal objects.This unique strategy also efficiently prevents the liquid metal inks from air oxidation,which is hard to avoid otherwise in an ordinary 3D printing.The key physical factors(such as properties of the cooling fluid,air pressure within the syringe barrel and needle diameter,types and properties of the printing ink)and several interesting intermediate fluids interaction phenomena between liquid metal and conventional cooling fluids such as water or ethanol,which evidently affecting the printing quality,were disclosed.In addition,a basic route to make future liquid phase 3D printer incorporated with both syringe pump and needle arrays was also suggested.The liquid phase 3D printing,which owns potential values not available in a conventional method,opens an efficient way for quickly making conductive metal objects in the coming time. 展开更多
关键词 liquid phase 3D printing liquid metal printer rapid prototyping low melting point metal liquid cooling OXIDATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部