针对基于概率假设密度算法(Probability Hypothesis Density,PHD)的高维纯方位多目标跟踪,提出了新型的PHD算法—新型采样准则的基于无迹变换的粒子PHD算法(Unscented Particle PHD based on New Sampling Rule,NSRUP-PHD).新算法对每...针对基于概率假设密度算法(Probability Hypothesis Density,PHD)的高维纯方位多目标跟踪,提出了新型的PHD算法—新型采样准则的基于无迹变换的粒子PHD算法(Unscented Particle PHD based on New Sampling Rule,NSRUP-PHD).新算法对每个目标设计了基于无迹变换(Unscented Transform,UT)的粒子滤波器,不仅解决了非线性滤波估计的问题,而且还通过高斯混合的方式实现了非高斯噪声估计.此外粒子滤波器提出了一种新型的采样手段,通过基于三阶容积准则(Cubature Rule,CR)的粒子方位选择和概率累加的距离延伸,使得采样粒子遍布整个空间的同时保障了粒子概率分布的问题,提高了粒子使用的效率.仿真结果表明NSRUP-PHD能够实现多目标有效跟踪,相比于传统的算法和伪随机采样,新型滤波器和采样手段可改善跟踪效果.展开更多
文摘针对基于概率假设密度算法(Probability Hypothesis Density,PHD)的高维纯方位多目标跟踪,提出了新型的PHD算法—新型采样准则的基于无迹变换的粒子PHD算法(Unscented Particle PHD based on New Sampling Rule,NSRUP-PHD).新算法对每个目标设计了基于无迹变换(Unscented Transform,UT)的粒子滤波器,不仅解决了非线性滤波估计的问题,而且还通过高斯混合的方式实现了非高斯噪声估计.此外粒子滤波器提出了一种新型的采样手段,通过基于三阶容积准则(Cubature Rule,CR)的粒子方位选择和概率累加的距离延伸,使得采样粒子遍布整个空间的同时保障了粒子概率分布的问题,提高了粒子使用的效率.仿真结果表明NSRUP-PHD能够实现多目标有效跟踪,相比于传统的算法和伪随机采样,新型滤波器和采样手段可改善跟踪效果.