In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-...In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-1)(β-2α-2)φ=f.展开更多
The pulse amplification in the dispersion-decreasing fiber (DDF) is investigated via symbolic computation to solve the variable-coefficient higher-order nonlinear Schrfdinger equation with the effects of third-order...The pulse amplification in the dispersion-decreasing fiber (DDF) is investigated via symbolic computation to solve the variable-coefficient higher-order nonlinear Schrfdinger equation with the effects of third-order dispersion, self-steepening, and stimulated Raman scattering. The analytic one-soliton solution of this model is obtained with a set of parametric conditions. Based on this solution, the fundamental soliton is shown to be amplified in the DDF. The comparison of the amplitude of pulses for different dispersion profiles of the DDF is also performed through the graphical analysis. The results of this paper would be of certain value to the study of signal amplification and pulse compression.展开更多
By using cone expansion-compression theorem in this paper, we study boundary value problems for a coupled system of nonlinear third-order differential equation. Some sufficient conditions are obtained which guarantee ...By using cone expansion-compression theorem in this paper, we study boundary value problems for a coupled system of nonlinear third-order differential equation. Some sufficient conditions are obtained which guarantee the boundary value problems for a coupled system of nonlinear third-order differential equation has at least one positive solution. Some examples are given to verify our results.展开更多
This paper presents a universal third-order Stokes solution with uniform current. This solution is derived on the basis of potential theory by expanding the free surface and potential function in Fourier series and de...This paper presents a universal third-order Stokes solution with uniform current. This solution is derived on the basis of potential theory by expanding the free surface and potential function in Fourier series and determining the Fourier coefficients by solving a set of nonlinear algebraic equations through the Taylor expansion and perturbation method. The universal solution is expressed upon the still water depth with the still water level as datum and retains a global perturbation parameter. The wave set-up term generated by the self-interaction of oscillatory waves is explicitly included in the free surface function. With the use of different definitions for the wave celerity, different water levels as the datum, different non-dimensional variables as the perturbation parameter, and different treatments for the total head, the universal solution can be reduced to the existing various Stokes solutions, thus explaining the reasons and the physical significance of different non-periodic terms in them, such as the positive or negative constant term in the free surface expression and the time-or space-proportional term in the potential function.展开更多
The authors consider a free interface problem which stems from a gas-solid model in combustion with pattern formation. A third-order, fully nonlinear, self-consistent equation for the flame front is derived. Asymptoti...The authors consider a free interface problem which stems from a gas-solid model in combustion with pattern formation. A third-order, fully nonlinear, self-consistent equation for the flame front is derived. Asymptotic methods reveal that the interface approaches a solution to the Kuramoto-Sivashinsky equation. Numerical results which illustrate the dynamics are presented.展开更多
In the present investigation, peristaltic flow Powell) has been taken into consideration in of non-Newtonian fluid model (Eyring- a cross-section of three-dimensional rect- angular channel. The flow is taken to be u...In the present investigation, peristaltic flow Powell) has been taken into consideration in of non-Newtonian fluid model (Eyring- a cross-section of three-dimensional rect- angular channel. The flow is taken to be unsteady and incompressible. The observations are made under the limitations of low Reynolds number and long wavelength which helps in reducing the governing equations. The walls of the channel are supposed to be compliant. The obtained equations are nonlinear partial differential equation of second order and have been solved analytically by using series solution technique. The achieved results are then portrayed graphically to see the variation of various emerging parame- ters on the profile of velocity. The stream functions have also been sketched in order to discuss the trapping behavior of the circular bolus.展开更多
文摘In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-1)(β-2α-2)φ=f.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.BUAA-SKLSDE-09KF-04+3 种基金Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20060006024 and 20080013006Chinese Ministry of Education
文摘The pulse amplification in the dispersion-decreasing fiber (DDF) is investigated via symbolic computation to solve the variable-coefficient higher-order nonlinear Schrfdinger equation with the effects of third-order dispersion, self-steepening, and stimulated Raman scattering. The analytic one-soliton solution of this model is obtained with a set of parametric conditions. Based on this solution, the fundamental soliton is shown to be amplified in the DDF. The comparison of the amplitude of pulses for different dispersion profiles of the DDF is also performed through the graphical analysis. The results of this paper would be of certain value to the study of signal amplification and pulse compression.
基金Foundation item: Supported by the National Natural Science Foundation of China(10801001) Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘By using cone expansion-compression theorem in this paper, we study boundary value problems for a coupled system of nonlinear third-order differential equation. Some sufficient conditions are obtained which guarantee the boundary value problems for a coupled system of nonlinear third-order differential equation has at least one positive solution. Some examples are given to verify our results.
基金supported by Fundamental Research Funds for the Central Universities (Grant No. 2010B02614)Natural Science Foundation of Hohai University (Grant No. 2009423511)+1 种基金National Natural Science Foundation of China (Grant No. 4176008)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This paper presents a universal third-order Stokes solution with uniform current. This solution is derived on the basis of potential theory by expanding the free surface and potential function in Fourier series and determining the Fourier coefficients by solving a set of nonlinear algebraic equations through the Taylor expansion and perturbation method. The universal solution is expressed upon the still water depth with the still water level as datum and retains a global perturbation parameter. The wave set-up term generated by the self-interaction of oscillatory waves is explicitly included in the free surface function. With the use of different definitions for the wave celerity, different water levels as the datum, different non-dimensional variables as the perturbation parameter, and different treatments for the total head, the universal solution can be reduced to the existing various Stokes solutions, thus explaining the reasons and the physical significance of different non-periodic terms in them, such as the positive or negative constant term in the free surface expression and the time-or space-proportional term in the potential function.
基金Project supported by a grant from the Fujian Administration of Foreign Expert Affairs,China (No.SZ2011008)
文摘The authors consider a free interface problem which stems from a gas-solid model in combustion with pattern formation. A third-order, fully nonlinear, self-consistent equation for the flame front is derived. Asymptotic methods reveal that the interface approaches a solution to the Kuramoto-Sivashinsky equation. Numerical results which illustrate the dynamics are presented.
文摘In the present investigation, peristaltic flow Powell) has been taken into consideration in of non-Newtonian fluid model (Eyring- a cross-section of three-dimensional rect- angular channel. The flow is taken to be unsteady and incompressible. The observations are made under the limitations of low Reynolds number and long wavelength which helps in reducing the governing equations. The walls of the channel are supposed to be compliant. The obtained equations are nonlinear partial differential equation of second order and have been solved analytically by using series solution technique. The achieved results are then portrayed graphically to see the variation of various emerging parame- ters on the profile of velocity. The stream functions have also been sketched in order to discuss the trapping behavior of the circular bolus.