针对退役锂电池健康状态估计效率较低的现状,提出一种快速、有效的估计方法。首先采用3阶RC等效电路模型描述电池特性得出状态方程,确保电池模型精确性,同时引入电池荷电状态SOC(State of charge)和欧姆内阻(R 0)作为状态方程参数。其...针对退役锂电池健康状态估计效率较低的现状,提出一种快速、有效的估计方法。首先采用3阶RC等效电路模型描述电池特性得出状态方程,确保电池模型精确性,同时引入电池荷电状态SOC(State of charge)和欧姆内阻(R 0)作为状态方程参数。其次利用区域概念,计算出特定的区域容量与区域电压,减少电池参数估计所需要的数据、时间。然后通过扩展卡尔曼滤波(Extended kalman filtering)算法估计电池参数SOC和R 0,进而对电池健康状态(State of health,SOH)进行估计。最后,利用电池测试设备(Arbin-BT2000)对18650电池进行充放电实验,验证该方法的可行性。实验结果证明SOH估计所需参数明显减少,使得电池数据测量所需时间明显缩短,并且估计误差不超过4%,误差较小,说明所提出方法能快速、有效地估算出电池SOH。展开更多
文摘针对退役锂电池健康状态估计效率较低的现状,提出一种快速、有效的估计方法。首先采用3阶RC等效电路模型描述电池特性得出状态方程,确保电池模型精确性,同时引入电池荷电状态SOC(State of charge)和欧姆内阻(R 0)作为状态方程参数。其次利用区域概念,计算出特定的区域容量与区域电压,减少电池参数估计所需要的数据、时间。然后通过扩展卡尔曼滤波(Extended kalman filtering)算法估计电池参数SOC和R 0,进而对电池健康状态(State of health,SOH)进行估计。最后,利用电池测试设备(Arbin-BT2000)对18650电池进行充放电实验,验证该方法的可行性。实验结果证明SOH估计所需参数明显减少,使得电池数据测量所需时间明显缩短,并且估计误差不超过4%,误差较小,说明所提出方法能快速、有效地估算出电池SOH。