期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于RDPSO结构优化的三隐层BP神经网络水质预测模型及应用
被引量:
4
1
作者
伏吉祥
《人民珠江》
2019年第4期96-100,133,共6页
提出基于随机漂移粒子群(RDPSO)算法结构优化的三隐层BP神经网络水质预测方法,利用RDPSO算法优化三隐层BP神经网络隐层节点数,构建三隐层RDPSO-BP水质预测模型,并与基于单隐层、双隐层节点优化的RDPSO-BP神经网络、基于网络权值阈值优化...
提出基于随机漂移粒子群(RDPSO)算法结构优化的三隐层BP神经网络水质预测方法,利用RDPSO算法优化三隐层BP神经网络隐层节点数,构建三隐层RDPSO-BP水质预测模型,并与基于单隐层、双隐层节点优化的RDPSO-BP神经网络、基于网络权值阈值优化的RDPSO-BP神经网络预测模型作对比,以云南省五里冲水库总氮预测为例进行实例研究,利用实例60个月的总氮监测资料对此4种模型进行训练和预测。结果显示,三隐层RDPSO-BP神经网络模型对总氮预测的平均相对误差绝对值为6.98%,预测精度远高于其他3种模型,具有较好的预测精度和泛化能力。模型及方法可为相关水质预测研究提供参考。
展开更多
关键词
水质预测
随机漂移粒子群算法
三隐层bp神经网络
结构优化
下载PDF
职称材料
题名
基于RDPSO结构优化的三隐层BP神经网络水质预测模型及应用
被引量:
4
1
作者
伏吉祥
机构
云南省水文水资源局红河分局
出处
《人民珠江》
2019年第4期96-100,133,共6页
文摘
提出基于随机漂移粒子群(RDPSO)算法结构优化的三隐层BP神经网络水质预测方法,利用RDPSO算法优化三隐层BP神经网络隐层节点数,构建三隐层RDPSO-BP水质预测模型,并与基于单隐层、双隐层节点优化的RDPSO-BP神经网络、基于网络权值阈值优化的RDPSO-BP神经网络预测模型作对比,以云南省五里冲水库总氮预测为例进行实例研究,利用实例60个月的总氮监测资料对此4种模型进行训练和预测。结果显示,三隐层RDPSO-BP神经网络模型对总氮预测的平均相对误差绝对值为6.98%,预测精度远高于其他3种模型,具有较好的预测精度和泛化能力。模型及方法可为相关水质预测研究提供参考。
关键词
水质预测
随机漂移粒子群算法
三隐层bp神经网络
结构优化
Keywords
water quality prediction
random drift particle swarm optimization algorithm
three Layer
bp
neural network
structural optimization
分类号
X832 [环境科学与工程—环境工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于RDPSO结构优化的三隐层BP神经网络水质预测模型及应用
伏吉祥
《人民珠江》
2019
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部