本文研究了移动环境下一类具有时滞的Lotka-Volterra合作系统行波解的存在性。利用单调迭代方法,通过构造合适的上下解,证明了当环境运动速度c>max{ c1∗,c2∗}时,系统连接两边界平衡点的行波解的存在性。Existence of traveling wave ...本文研究了移动环境下一类具有时滞的Lotka-Volterra合作系统行波解的存在性。利用单调迭代方法,通过构造合适的上下解,证明了当环境运动速度c>max{ c1∗,c2∗}时,系统连接两边界平衡点的行波解的存在性。Existence of traveling wave front solutions is established for diffusive and cooperative Lotka-Volterra system with delays in a shifting environment. Using the method of monotone iteration and by constructing appropriate upper and lower solutions, it is proven that when the environmental movement speed is c>max{ c1∗,c2∗}, there exist traveling wave solutions that connect the boundary equilibrium points of the system.展开更多
文摘本文研究了移动环境下一类具有时滞的Lotka-Volterra合作系统行波解的存在性。利用单调迭代方法,通过构造合适的上下解,证明了当环境运动速度c>max{ c1∗,c2∗}时,系统连接两边界平衡点的行波解的存在性。Existence of traveling wave front solutions is established for diffusive and cooperative Lotka-Volterra system with delays in a shifting environment. Using the method of monotone iteration and by constructing appropriate upper and lower solutions, it is proven that when the environmental movement speed is c>max{ c1∗,c2∗}, there exist traveling wave solutions that connect the boundary equilibrium points of the system.