In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in...In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.展开更多
In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference...In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.展开更多
We present the noncommutative differential calculus on the function space of the infinite set and construct a homotopy operator to prove the analogue of the Poincare lemma for the difference complex. Then the horizont...We present the noncommutative differential calculus on the function space of the infinite set and construct a homotopy operator to prove the analogue of the Poincare lemma for the difference complex. Then the horizontal and vertical complexes are introduced with the total differential map and vertical exterior derivative. As the application of the differential calculus, we derive the schemes with the conservation of symplecticity and energy for Hamiltonian system and a two-dimensional integral models with infinite sequence of conserved currents. Then an Euler-Lagrange cohomology with symplectic structure-preserving is given in the discrete classical mechanics.展开更多
文摘In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.
文摘In the previous papers I and II, we have studied the difference discrete variational principle and the Euler?Lagrange cohomology in the framework of multi-parameter differential approach. We have gotten the difference discrete Euler?Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler?Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangian and Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler?Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonian schemes or Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler?Lagrange cohomological conditions are satisfied.
基金The project supported by National Natural Science Foundation of China under Grant No.10626016China Postdoctor Science Foundation of Henan University under Grant No.05YBZR014
文摘We present the noncommutative differential calculus on the function space of the infinite set and construct a homotopy operator to prove the analogue of the Poincare lemma for the difference complex. Then the horizontal and vertical complexes are introduced with the total differential map and vertical exterior derivative. As the application of the differential calculus, we derive the schemes with the conservation of symplecticity and energy for Hamiltonian system and a two-dimensional integral models with infinite sequence of conserved currents. Then an Euler-Lagrange cohomology with symplectic structure-preserving is given in the discrete classical mechanics.