It is shown that r(W_m, K_n)≤(1+o(1))C_1n log n 2m-2m-2 for fixed even m≥4 and n→∞, and r(W_m, K_n)≤(1+o(1))C_2n 2mm+1 log n m+1m-1 for fixed odd m≥5 and n→∞, wher...It is shown that r(W_m, K_n)≤(1+o(1))C_1n log n 2m-2m-2 for fixed even m≥4 and n→∞, and r(W_m, K_n)≤(1+o(1))C_2n 2mm+1 log n m+1m-1 for fixed odd m≥5 and n→∞, where C_1=C_1(m)>0 and C_2=C_2(m)>0, in particular, C_2=12 if m=5 . It is obtained by the analytic method and using the function f_m(x)=∫ 1 _ 0 (1-t) 1m dtm+(x-m)t , x≥0 , m≥1 on the base of the asymptotic upper bounds for r(C_m, K_n) which were given by Caro, et al. Also, cn log n 52 ≤r(K_4, K_n)≤(1+o(1)) n 3 ( log n) 2 (as n→∞ ). Moreover, we give r(K_k+C_m, K_n)≤(1+o(1))C_5(m)n log n k+mm-2 for fixed even m≥4 and r(K_k+C_m, K_n)≤(1+o(1))C_6(m)n 2+(k+1)(m-1)2+k(m-1) log n k+2m-1 for fixed odd m≥3 (as n→∞ ).展开更多
[App1.Anal.Discrete Math.,2017,11(1):81-107] defined the A_α-matrix of a graph G as A_α(G)=αD(G)+(1-α)A(G),where α∈[0,1],D(G) and A(G) are the diagonal matrix of degrees and the adjacency matrix of G,respectivel...[App1.Anal.Discrete Math.,2017,11(1):81-107] defined the A_α-matrix of a graph G as A_α(G)=αD(G)+(1-α)A(G),where α∈[0,1],D(G) and A(G) are the diagonal matrix of degrees and the adjacency matrix of G,respectively.The largest eigenvalue of A_α(G)is called the A_α-spectral radius of G,denoted by ρ_α(G).In this paper,we give an upper bound on ρ_α(G) of a Hamiltonian graph G with m edges for α∈[1/2,1),and completely characterize the corresponding extremal graph in the case when m is odd.In order to complete the proof of the main result,we give a sharp upper bound on the ρ_α(G) of a connected graph G in terms of its degree sequence.展开更多
Let G(V, E) be a unicyclic graph, Cm be a cycle of length m and Cm G, and ui ∈ V(Cm). The G - E(Cm) are m trees, denoted by Ti, i = 1, 2,..., m. For i = 1, 2,..., m, let eui be the excentricity of ui in Ti an...Let G(V, E) be a unicyclic graph, Cm be a cycle of length m and Cm G, and ui ∈ V(Cm). The G - E(Cm) are m trees, denoted by Ti, i = 1, 2,..., m. For i = 1, 2,..., m, let eui be the excentricity of ui in Ti and ec = max{eui : i = 1, 2 , m}. Let κ = ec+1. Forj = 1,2,...,k- 1, let δij = max{dv : dist(v, ui) = j,v ∈ Ti}, δj = max{δij : i = 1, 2,..., m}, δ0 = max{dui : ui ∈ V(Cm)}. Then λ1(G)≤max{max 2≤j≤k-2 (√δj-1-1+√δj-1),2+√δ0-2,√δ0-2+√δ1-1}. If G ≌ Cn, then the equality holds, where λ1 (G) is the largest eigenvalue of the adjacency matrix of G.展开更多
For a graph, its boxicity is the minimum dimension k such that G is representable as the intersection graph of axis-parallel boxes'in the k-dimension space. When the boxes are restricted to be axis-parallel k-dimensi...For a graph, its boxicity is the minimum dimension k such that G is representable as the intersection graph of axis-parallel boxes'in the k-dimension space. When the boxes are restricted to be axis-parallel k-dimension cube's, the minimum k required to represent G is called the cubicity of G. In this paper, a special graph .called unit-interval graph. IG[X, Y] is given, then 2n such graphs which have the same vertices as V(FQn) are constructed, where FQ, is the n-dimension folded hypercube. Thanks to the specia] structure of IG[X, Y], the result that cubicity(FQn)≤ 2n is proved.展开更多
文摘It is shown that r(W_m, K_n)≤(1+o(1))C_1n log n 2m-2m-2 for fixed even m≥4 and n→∞, and r(W_m, K_n)≤(1+o(1))C_2n 2mm+1 log n m+1m-1 for fixed odd m≥5 and n→∞, where C_1=C_1(m)>0 and C_2=C_2(m)>0, in particular, C_2=12 if m=5 . It is obtained by the analytic method and using the function f_m(x)=∫ 1 _ 0 (1-t) 1m dtm+(x-m)t , x≥0 , m≥1 on the base of the asymptotic upper bounds for r(C_m, K_n) which were given by Caro, et al. Also, cn log n 52 ≤r(K_4, K_n)≤(1+o(1)) n 3 ( log n) 2 (as n→∞ ). Moreover, we give r(K_k+C_m, K_n)≤(1+o(1))C_5(m)n log n k+mm-2 for fixed even m≥4 and r(K_k+C_m, K_n)≤(1+o(1))C_6(m)n 2+(k+1)(m-1)2+k(m-1) log n k+2m-1 for fixed odd m≥3 (as n→∞ ).
文摘[App1.Anal.Discrete Math.,2017,11(1):81-107] defined the A_α-matrix of a graph G as A_α(G)=αD(G)+(1-α)A(G),where α∈[0,1],D(G) and A(G) are the diagonal matrix of degrees and the adjacency matrix of G,respectively.The largest eigenvalue of A_α(G)is called the A_α-spectral radius of G,denoted by ρ_α(G).In this paper,we give an upper bound on ρ_α(G) of a Hamiltonian graph G with m edges for α∈[1/2,1),and completely characterize the corresponding extremal graph in the case when m is odd.In order to complete the proof of the main result,we give a sharp upper bound on the ρ_α(G) of a connected graph G in terms of its degree sequence.
基金Foundation item: the National Natural Science Foundation of China (No. 10861009).
文摘Let G(V, E) be a unicyclic graph, Cm be a cycle of length m and Cm G, and ui ∈ V(Cm). The G - E(Cm) are m trees, denoted by Ti, i = 1, 2,..., m. For i = 1, 2,..., m, let eui be the excentricity of ui in Ti and ec = max{eui : i = 1, 2 , m}. Let κ = ec+1. Forj = 1,2,...,k- 1, let δij = max{dv : dist(v, ui) = j,v ∈ Ti}, δj = max{δij : i = 1, 2,..., m}, δ0 = max{dui : ui ∈ V(Cm)}. Then λ1(G)≤max{max 2≤j≤k-2 (√δj-1-1+√δj-1),2+√δ0-2,√δ0-2+√δ1-1}. If G ≌ Cn, then the equality holds, where λ1 (G) is the largest eigenvalue of the adjacency matrix of G.
文摘For a graph, its boxicity is the minimum dimension k such that G is representable as the intersection graph of axis-parallel boxes'in the k-dimension space. When the boxes are restricted to be axis-parallel k-dimension cube's, the minimum k required to represent G is called the cubicity of G. In this paper, a special graph .called unit-interval graph. IG[X, Y] is given, then 2n such graphs which have the same vertices as V(FQn) are constructed, where FQ, is the n-dimension folded hypercube. Thanks to the specia] structure of IG[X, Y], the result that cubicity(FQn)≤ 2n is proved.