期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
关于图能量上界的注释
1
作者 王海明 《青海师范大学学报(自然科学版)》 2014年第2期13-15,共3页
对一个简单连通图G V(,E)来说,其能量表示为图G V(,E)的邻接矩阵特征值的绝对值之和.在文献[1]中,Kinkar Ch.Das和Seyed A.Mojallal用定点个数、边数、团数以及顶点的最小度数给出了一个图能量的新上界.在计算验证中我们发现一点瑕疵,... 对一个简单连通图G V(,E)来说,其能量表示为图G V(,E)的邻接矩阵特征值的绝对值之和.在文献[1]中,Kinkar Ch.Das和Seyed A.Mojallal用定点个数、边数、团数以及顶点的最小度数给出了一个图能量的新上界.在计算验证中我们发现一点瑕疵,本文给予修正,并正确给出修正的图能量的上界. 展开更多
关键词 简单连通 能量 能量的上界
下载PDF
《图论的例和反例》一书中的若干问题
2
作者 田忠祥 张忠辅 《青海师范大学学报(自然科学版)》 1991年第3期12-16,共5页
本文纠正了《图论中的例和反例》一书中的三个错误。
关键词 色数 色多项式 上界图
下载PDF
Asymptotic upper bounds for wheel:complete graph Ramsey numbers
3
作者 宋洪雪 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期126-129,共4页
It is shown that r(W_m, K_n)≤(1+o(1))C_1n log n 2m-2m-2 for fixed even m≥4 and n→∞, and r(W_m, K_n)≤(1+o(1))C_2n 2mm+1 log n m+1m-1 for fixed odd m≥5 and n→∞, wher... It is shown that r(W_m, K_n)≤(1+o(1))C_1n log n 2m-2m-2 for fixed even m≥4 and n→∞, and r(W_m, K_n)≤(1+o(1))C_2n 2mm+1 log n m+1m-1 for fixed odd m≥5 and n→∞, where C_1=C_1(m)>0 and C_2=C_2(m)>0, in particular, C_2=12 if m=5 . It is obtained by the analytic method and using the function f_m(x)=∫ 1 _ 0 (1-t) 1m dtm+(x-m)t , x≥0 , m≥1 on the base of the asymptotic upper bounds for r(C_m, K_n) which were given by Caro, et al. Also, cn log n 52 ≤r(K_4, K_n)≤(1+o(1)) n 3 ( log n) 2 (as n→∞ ). Moreover, we give r(K_k+C_m, K_n)≤(1+o(1))C_5(m)n log n k+mm-2 for fixed even m≥4 and r(K_k+C_m, K_n)≤(1+o(1))C_6(m)n 2+(k+1)(m-1)2+k(m-1) log n k+2m-1 for fixed odd m≥3 (as n→∞ ). 展开更多
关键词 Ramsey numbers WHEELS independent number complete graphs
下载PDF
An Upper Bound on the A_(α)-spectral Radius of Hamiltonian Graphs with Given Size
4
作者 ZHANG Rong GUO Shuguang 《数学进展》 CSCD 北大核心 2024年第5期993-1002,共10页
[App1.Anal.Discrete Math.,2017,11(1):81-107] defined the A_α-matrix of a graph G as A_α(G)=αD(G)+(1-α)A(G),where α∈[0,1],D(G) and A(G) are the diagonal matrix of degrees and the adjacency matrix of G,respectivel... [App1.Anal.Discrete Math.,2017,11(1):81-107] defined the A_α-matrix of a graph G as A_α(G)=αD(G)+(1-α)A(G),where α∈[0,1],D(G) and A(G) are the diagonal matrix of degrees and the adjacency matrix of G,respectively.The largest eigenvalue of A_α(G)is called the A_α-spectral radius of G,denoted by ρ_α(G).In this paper,we give an upper bound on ρ_α(G) of a Hamiltonian graph G with m edges for α∈[1/2,1),and completely characterize the corresponding extremal graph in the case when m is odd.In order to complete the proof of the main result,we give a sharp upper bound on the ρ_α(G) of a connected graph G in terms of its degree sequence. 展开更多
关键词 Hamiltonian graph A_(α)-spectral radius upper bound SIZE
原文传递
Improved Upper Bounds for the Largest Eigenvalue of Unicyclic Graphs
5
作者 HU Sheng Biao 《Journal of Mathematical Research and Exposition》 CSCD 2009年第5期945-950,共6页
Let G(V, E) be a unicyclic graph, Cm be a cycle of length m and Cm G, and ui ∈ V(Cm). The G - E(Cm) are m trees, denoted by Ti, i = 1, 2,..., m. For i = 1, 2,..., m, let eui be the excentricity of ui in Ti an... Let G(V, E) be a unicyclic graph, Cm be a cycle of length m and Cm G, and ui ∈ V(Cm). The G - E(Cm) are m trees, denoted by Ti, i = 1, 2,..., m. For i = 1, 2,..., m, let eui be the excentricity of ui in Ti and ec = max{eui : i = 1, 2 , m}. Let κ = ec+1. Forj = 1,2,...,k- 1, let δij = max{dv : dist(v, ui) = j,v ∈ Ti}, δj = max{δij : i = 1, 2,..., m}, δ0 = max{dui : ui ∈ V(Cm)}. Then λ1(G)≤max{max 2≤j≤k-2 (√δj-1-1+√δj-1),2+√δ0-2,√δ0-2+√δ1-1}. If G ≌ Cn, then the equality holds, where λ1 (G) is the largest eigenvalue of the adjacency matrix of G. 展开更多
关键词 unicyclic graph adjacency matrix largest eigenvalue.
下载PDF
An Upper Bound for the Cubicity of Folded Hypercube
6
作者 Changqing Liu Hongmei Li Lei Ma 《Journal of Systems Science and Information》 2009年第4期295-301,共7页
For a graph, its boxicity is the minimum dimension k such that G is representable as the intersection graph of axis-parallel boxes'in the k-dimension space. When the boxes are restricted to be axis-parallel k-dimensi... For a graph, its boxicity is the minimum dimension k such that G is representable as the intersection graph of axis-parallel boxes'in the k-dimension space. When the boxes are restricted to be axis-parallel k-dimension cube's, the minimum k required to represent G is called the cubicity of G. In this paper, a special graph .called unit-interval graph. IG[X, Y] is given, then 2n such graphs which have the same vertices as V(FQn) are constructed, where FQ, is the n-dimension folded hypercube. Thanks to the specia] structure of IG[X, Y], the result that cubicity(FQn)≤ 2n is proved. 展开更多
关键词 BOXICITY cubicity folded hypercube unit-interval graph
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部