The remarkable ability of rapid self-renewal makes the intestinal epithelium an ideal model for the study of adult stem cells. The intestinal epithelium is organized into villus and crypt, and a group of intestinal st...The remarkable ability of rapid self-renewal makes the intestinal epithelium an ideal model for the study of adult stem cells. The intestinal epithelium is organized into villus and crypt, and a group of intestinal stem cells located at the base of crypt are responsible for this constant self-renewal throughout the life. Identification of the intestinal stem cell marker Lgr5, isolation and in vitro culture of Lgr5+ intestinal stem cells and the use of transgenic mouse models have significantly facilitated the studies of intestinal stem cell homeostasis and differentiation, therefore greatly expanding our knowledge of the regulatory mechanisms underlying the intestinal stem cell fate determination. In this review, we summarize the current understanding of how signals of Wnt, BMP, Notch and EGF in the stem cell niche modulate the intestinal stem cell fate.展开更多
Paracrine pathway activities are being increasingly recognized as instrumental regulatory mechanisms of epithelial-stromal interactions that play important roles in physiological and pathological self-renewal of stem ...Paracrine pathway activities are being increasingly recognized as instrumental regulatory mechanisms of epithelial-stromal interactions that play important roles in physiological and pathological self-renewal of stem cells and in the initiation and maintenance of neoplastic tumor development.Stromal-specific Hedgehog(Hh)responses and epithelial-associated Wnt pathway activities have been recently appreciated as important factors in stem cell self-renewal and carcinogenesis.Furthermore,Hh and Wnt pathways frequently crosstalk with each other to regulate the growth of epithelial cells in a context-dependent manner.Because small molecule modulators of Hh and Wnt pathway activities are readily available,emerging roles of Hh-Wnt pathway crosstalk in epithelial-stromal interactions will shed light on the development of regenerative and anti-cancer medicines.展开更多
基金supported by the National Natural Science Foundation of China(31330049,31221064)National Basic Research Program of China(2011CB943803,2011CBA01104,2010CB833706)to Chen Ye-Guang
文摘The remarkable ability of rapid self-renewal makes the intestinal epithelium an ideal model for the study of adult stem cells. The intestinal epithelium is organized into villus and crypt, and a group of intestinal stem cells located at the base of crypt are responsible for this constant self-renewal throughout the life. Identification of the intestinal stem cell marker Lgr5, isolation and in vitro culture of Lgr5+ intestinal stem cells and the use of transgenic mouse models have significantly facilitated the studies of intestinal stem cell homeostasis and differentiation, therefore greatly expanding our knowledge of the regulatory mechanisms underlying the intestinal stem cell fate determination. In this review, we summarize the current understanding of how signals of Wnt, BMP, Notch and EGF in the stem cell niche modulate the intestinal stem cell fate.
文摘Paracrine pathway activities are being increasingly recognized as instrumental regulatory mechanisms of epithelial-stromal interactions that play important roles in physiological and pathological self-renewal of stem cells and in the initiation and maintenance of neoplastic tumor development.Stromal-specific Hedgehog(Hh)responses and epithelial-associated Wnt pathway activities have been recently appreciated as important factors in stem cell self-renewal and carcinogenesis.Furthermore,Hh and Wnt pathways frequently crosstalk with each other to regulate the growth of epithelial cells in a context-dependent manner.Because small molecule modulators of Hh and Wnt pathway activities are readily available,emerging roles of Hh-Wnt pathway crosstalk in epithelial-stromal interactions will shed light on the development of regenerative and anti-cancer medicines.