Epithelial-mesenchymal transition (EMT) is a highly conserved process that has been well characterised in embryogenesis. Studies have shown that the aberrant activation of EMT in adult epithelia can promote tumour met...Epithelial-mesenchymal transition (EMT) is a highly conserved process that has been well characterised in embryogenesis. Studies have shown that the aberrant activation of EMT in adult epithelia can promote tumour metastasis by repressing cell adhesion molecules,including epithelial (E)-cadherin. Reduced intracellular adhesion may allow tumour cells to disseminate and spread throughout the body. A number of transcription proteins of the Snail superfamily have been implicated in EMT. These proteins have been shown to be over-expressed in advanced gastrointestinal (GI) tumours including oesophageal adenocarcinomas,colorectal carcinomas,gastric and pancreatic cancers,with a concomitant reduction in the expression of E-cadherin. Regulators of EMT may provide novel clinical targets to detect GI cancers early,so that cancers previously associated with a poor prognosis such as pancreatic cancer can be diagnosed before they become inoperable. Furthermore,pharmacological therapies designed to inhibit these proteins will aim to prevent local and distant tumour invasion.展开更多
AIM: To explore the effect of recombinant human interleukin-11 (rhIL-11) on the expressions of interleukin-11 receptor α-chain (IL-11Rα) and an additional signal transducer glycoprotein 130 (gp130) in intesti...AIM: To explore the effect of recombinant human interleukin-11 (rhIL-11) on the expressions of interleukin-11 receptor α-chain (IL-11Rα) and an additional signal transducer glycoprotein 130 (gp130) in intestinal epithelium cell line-6 (IEC-6) after neutron irradiation. METHODS: Cultured IEC-6 cells were exposed to 4.0Gy neutron and treated with 100 ng/mL rhIL-11 12 h prior to or immediately after irradiation. The apoptosis and necrosis rates and expressions of IL-11Rα and gp130 were observed by flow cytometry, immunohistochemistry, Western blot and image analysis. RESULTS: The apoptosis rate of IEC-6 cells was increased by irradiation at 6 h (P 〈 0.01), IL-11 stimulation resulted in a decreased apoptosis rate in irradiated IEC-6 cells (P 〈 0.05). In normal control IEC-6 cells, intense immunoreactivity of IL-11Rα was located within the cell membrane and cytoplasm. The level of IL-11Rα expression significantly decreased at 6 h after irradiation (P 〈 0.01) and restored at 24 h after irradiation. In IEC-6 cells treated with both radiation and rhIL-11, the level of IL- 11Rα expression was higher than that of irradiated cells (P 〈 0.05). When it came to gp130 protein, it was located in the cytoplasm of IEC-6 cells. After irradiation, we found a progressive decrease in the expression of gp130 protein (P 〈 0.05) in 48 hours post-radiation, while in rhIL-11-stimulated cells, it came back to normal level at 24 h after irradiation and decreased at 48 h, but was still higher than that of only irradiated cells (P 〈 0.05). CONCLUSION: rhIL-11 can protect IEC-6 cells from neutron irradiation. The protective effect of rhIL-11 might be connected with its ability to up-regulate the expressions of specific ligand-binding subunit IL-11Rα and signal-transducing subunit gp130.展开更多
CREB-binding protein (CBP) and its homologue p300 are transcriptional co-activators of various sequence-specific transcription factors that are involved in a wide array of cellular activities, such as DNA repair, ce...CREB-binding protein (CBP) and its homologue p300 are transcriptional co-activators of various sequence-specific transcription factors that are involved in a wide array of cellular activities, such as DNA repair, cell growth, differentia- tion and apoptosis. Several studies have suggested that CBP and p300 might be considered as tumour suppressors, with their prominent role being the cross-coupling of distinct gene expression patterns in response to various stimuli. They exert their actions mainly via acetylation of histones and other regulatory proteins (e.g. p53). A major paradox in CBP/ p300 function is that they seem capable of contributing to various opposed cellular processes. Respiratory epithelium tumorigenesis represents a complex process of multi-step accumulations of a gamut of genetic and epigenetic aberrations. Transcription modulation through the alternate formation of activating and repressive complexes is the ultimate converging point of these derangements, and CBP/p300 represents key participants in this interplay. Thus, illumination of their molecular actions and interactions could reveal new potential targets for pharmacological interventions in respiratory epithelium carcinogenesis.展开更多
AIM: To investigate the expression of SNC73, a transcript of the immunoglobulin α-1 gene (IgA1-H chain), in human epitheliα-derived tumor cells. METHODS: Total RNAs and cell lysates were prepared from five diffe...AIM: To investigate the expression of SNC73, a transcript of the immunoglobulin α-1 gene (IgA1-H chain), in human epitheliα-derived tumor cells. METHODS: Total RNAs and cell lysates were prepared from five different human epithelial cell lines derived from lung, stomach, liver, skin, and breast, respectively. RT-PCR and immunoblot analysis of these five cell lines were done. Both RT-PCR and immunochemistry were used to detect the expression of SNC73 in these cell lines. We also examined the expression of SNC73 in normal epithelial cells of colon mucosa by in situ hybridization. RT-PCR and immunoblot analysis were used to determine whether the recombination activating gene1/2 (RAG1 and RAG2) is present. The expression of three immunoglobulin transcription factors, EBF, E2A and Pax5, and the heavy chain of IgA1 and two types of light chains of immunoglobulin (κ and λ) in the aforementioned cell lines were analyzed by RT-PCR and immunochemistry, respectively. All the RT-PCR products were analyzed by sequencing. RESULTS: The results of RT-PCR and immunochemistry showed that both mRNA and protein of SNC73 were expressed in five human epitheliα-derived cancer cell lines. These data were further confirmed in the normal epithelial cells of colon mucosa by in situ hybridization. Also, the heavy chain of IgA1 and κ light chain were detected in these cells, but no λ light chain was observed. Both RAG1 and RAG2 were expressed in these human epitheliα-derived cancer cell lines and the sequence was identical to that expressed in pre-B and pre-T cells. In addition to RAG1 and RAG2, the mRNA in one of the immunoglobulin transcription factors, EBF, was also detected in these cell lines, and Pax5 was only expressed in SW480 cells, but no expression of E2A was observed in all the five cell lines. CONCLUSION: Immunoglobulin A1 is originally expressed and V(D)J recombination machine is also present in non-lymphoid cells, suggesting that V(D)J recombination machine mediates the assembly of immunoglobulin A1 in non-lymphoid cells as in prelymphocytes.展开更多
Epithelial-to-mesenchymal and mesenchymal-to-epi- thelial transitions are well established biological events which have an important role in not just normal tissue and organ development, but in the pathogenesis of dis...Epithelial-to-mesenchymal and mesenchymal-to-epi- thelial transitions are well established biological events which have an important role in not just normal tissue and organ development, but in the pathogenesis of diseases. Increasing evidence has established their presence in the human colon during colorectal carcinogenesis and cancer invasion, chronic inflammation-related fibrosis and in the course of mucosal healing. A large body of evidence supports the role for transforming growth factor-13 and its downstream Smad signaling, the phosphatidylinositol 3'-kinase/Akt/mTOR axis, the Ras-mitogen-activated protein kinase/Snail/Slug and FOXC2 pathway, and Hedgehog signaling and microR- NAs in the development of colorectal cancers via epi- thelial-to-mesenchymal transition. C-met and Frizzled-7, among others, seem to be the principle effectors of mesenchymal-to-epithelial transition, hence have a role not just in mucosal regeneration but in the progression of colonic wall fibrosis. Here we discuss a role for these pathways in the initiation and development of the transition events. A better understanding of their induction and regulation may lead to the identification of pathways and factors that could be potent therapeu- tic targets. The inhibition of epithelial-to-mesenchymal transition using mTOR kinase inhibitors targeting theATP binding pocket and which inhibit both mTORC1 and mTORC2, RNA aptamers or peptide mimetics, such as a Wnt5A-mimetic, may all be useful in both cancer treatment and delaying fibrosis, while the induction of mesenchymal-to-epithelial transition in induced pluripotent stem cells may enhance epithelial healing in the case of severe mucosal damage. The preliminary results of the current studies are promising, but more clinical investigations are needed to develop new and safe therapeutic strategies for diseases of the colon.展开更多
AIM: NF-κB, regulate the expression of cytokine-inducible genes involving immune and inflammatory responses, will be potential therapy approach for allograft from rejection. In this study, we use pCMV-IκBαM vector ...AIM: NF-κB, regulate the expression of cytokine-inducible genes involving immune and inflammatory responses, will be potential therapy approach for allograft from rejection. In this study, we use pCMV-IκBαM vector to inhibit NF-κB activation and investigate the effect of pCMV-IκBαM in inhibition of T cells adhesion to endothelial cells. METHODS: The NF-κB activity was detected with pNF-κB reporter gene and electrophoretic mobility shift assay. Expression of cell surface molecules was detected by RT-PCR and flow cytometer. The cell-cell adhesion assay was performed to determine the effect of pCMV-IκBαM in inhibition of T cells adhesion to endothelial cells. RESULTS: We could find that NF-κB activity is inhibited by over-expression of non-degraded IκBα protein. Expression of adhesion molecules like ICAM-1, VCAM-1, and P-selectin as well as cell-cell adhesion were inhibited significantly by transfection of the pCMV-IκBαM vector. CONCLUSION: Our results indicate that the pCMVIκBαM, which inhibit the activity of NF-κB through over-expression of non-degraded IκBα protein, can be used for gene therapy in diseases involving NF-κB activation abnormally like organ transplantation via inhibiting cell adhesion.展开更多
Objective To study the regulatory mechanism of SATB1 repression in cells other than T cells or erythroid cells, which have high expression level of SATB1. Methods HeLa epithelial cells were treated with either histone...Objective To study the regulatory mechanism of SATB1 repression in cells other than T cells or erythroid cells, which have high expression level of SATB1. Methods HeLa epithelial cells were treated with either histone deacetylase inhibitor (HDACi) trichostatin A (TSA) or DNA methylation inhibitor 5-Aza-C before detecting SATB1 expression. Luciferase reporter system was applied to measure effects of EZH2 on SATB1 promoter activity. Over-expression or knockdown of EZH2 and subsequent quantitative reverse transcription-polymerase chain reaction were performed to determine the effect of this Polycomb group protein on SATB1 transcription. Chromatin immunoprecipitation (ChIP) assay was applied to measure enrichment of EZH2 and trimethylated H3K27 (H3K27me3) at SATB1 promoter in HeLa cells. K562 cells and Jurkat cells, both having high-level expression of SATB1, were used in the ChIP experiment as controls. Results Both TSA and 5-Aza-C increased SATB1 expression in HeLa cells. Over-expression of EZH2 reduced promoter activity as well as the mRNA level of SATB1, while knockdown of EZH2 apparently enhanced SATB1 expression in HeLa cells but not in K562 cells and Jurkat cells. ChIP assay results suggested that epigenetic silencing of SATB1 by EZH2 in HeLa cells was mediated by trimethylation modification of H3K27. In contrast, enrichment of EZH2 and H3K27me3 was not detected within proximal promoter region of SATB1 in either K562 or Jurkat cells. Conclusion SATB1 is a bona fide EZH2 target gene in HeLa cells and the repression of SATB1 by EZH2 may be mediated by trimethylation modification on H3K27.展开更多
Objective: To study explores the effect of HLEC on the secreted proteins of epithelial ovarian cancer (EOC) cells (SKOV3-PM4) with directional highly lymphatic metastasis. Methods: Supernatants of four groups of...Objective: To study explores the effect of HLEC on the secreted proteins of epithelial ovarian cancer (EOC) cells (SKOV3-PM4) with directional highly lymphatic metastasis. Methods: Supernatants of four groups of cultured cells, namely, SKOV3 (A), SKOV3+HLEC (B), SKOV3-PM4 (C), SKOV3-PM4+HLEC (D), were collected, and their proteins were detected by antibody arrays and iTRAOcZD-LC-MALDI- TOF/TOF/MS. Significantly differential proteins were further analyzed via bioinformatics and validated in human serums and cell media via ELISA. Results: Results of antibody arrays and mass spectrometry demonstrated that GRN and VEGFA were upregulated in group C (compared with group A), whereas IGFBP7 and SPARC were downregulated in group D (compared with group C). Comprehensive bioinformatics analysis results showed that IGFBP7 and VEGFA were closely linked to each other. Further validation with serums showed statistical significance in VEGFA and IGFBP7 levels among groups of patients with ovarian cancers, benign tumors, and control groups. Two proteins were upegulated in the first group. VEGFA in the control group was downregulated. For IGFBP, upregulation in the control group and down-regulation in the first group were also observed. Conclusion: The HLEC microenvironment is closely associated with directional metastasis to lymph nodes and with differential proteins including cell stromal proteins and adhesion factors. The upregulation of VEGFA and GRN and the downregulation of SPARC and IGFBP7 are closely associated with directional metastasis to lymph nodes in EOC cells.展开更多
Prion diseases are a group of neurodegenerative diseases that are fatal. The study of these unique diseases in China is hampered by a lack of resources. Amongst the most important resources for biological study are mo...Prion diseases are a group of neurodegenerative diseases that are fatal. The study of these unique diseases in China is hampered by a lack of resources. Amongst the most important resources for biological study are monoclonal antibodies. Here, we characterize a panel of monoclonal antibodies specific for cellular prion protein by enzyme-linked immunosorbent assay(ELISA), immunofluorescent staining, flow cytometry, and western blotting. We identify several antibodies that can be used for specific applications and we demonstrate that there is no prion protein expression in human pancreatic ductal epithelial cells(HPDC).展开更多
AIM:To study the effect of salvianolate on tight junctions(TJs) and zonula occludens protein 1(ZO-1) in small intestinal mucosa of cirrhotic rats.METHODS:Cirrhosis was induced using carbon tetrachloride.Rats were rand...AIM:To study the effect of salvianolate on tight junctions(TJs) and zonula occludens protein 1(ZO-1) in small intestinal mucosa of cirrhotic rats.METHODS:Cirrhosis was induced using carbon tetrachloride.Rats were randomly divided into the untreated group,low-dose salvianolate(12 mg/kg) treatment group,medium-dose salvianolate(24 mg/kg) treatment group,and high-dose salvianolate(48 mg/kg) treatment group,and were treated for 2 wk.Another 10 healthy rats served as the normal control group.Histological changes in liver tissue samples were observed under a light microscope.We evaluated morphologic indices of ileal mucosa including intestinal villi width and thickness of mucosa and intestinal wall using a pathological image analysis system.Ultrastructural changes in small intestinal mucosa were investigated in the five groups using transmission electron microscopy.The changes in ZO-1 expression,a tight junction protein,were analyzed by immunocytochemistry.The staining index was calculated as the product of the staining intensity score and the proportion of positive cells.RESULTS:In the untreated group,hepatocytes showed a disordered arrangement,fatty degeneration was extensive,swelling was obvious,and disorganized lobules were divided by collagen fibers in hepatic tissue,which were partly improved in the salvianolate treated groups.In the untreated group,abundant lymphocytes infiltrated the fibrous tissue with proliferation of bile ducts,and collagen fibers gradually decreased and damaged hepatic lobules were partly repaired following salvianolate treatment.Compared with the untreated group,no differences in intestinal villi width between the five groups were observed.The villi height as well as mucosa and intestinal wall thickness gradually thickened with salvianolate treatment and were significantly shorter in the untreated group compared with those in the salvianolate treatment groups and normal group(P < 0.01).The number of microvilli decreased and showed irregular lengths and arrangements in the untreated group.The intercellular space between epithelial cells was wider.The TJs were discontinuous,which indicated disruption in TJ morphology in the untreated group.In the treated groups,the microvilli in the intestinal epithelium were regular and the TJs were gradually integrated and distinct.The expression of ZO-1 decreased in the small intestine of the untreated cirrhotic rats.The high expression rate of ZO-1 in ileal mucosa in the untreated group was significantly lower than that in the medium-dose salvianolate group(21.43% vs 64.29%,χ 2 = 5.25,P < 0.05),high-dose salvianolate group(21.43% vs 76.92%,χ 2 = 8.315,P < 0.01) and normal group(21.43% vs 90%,χ 2 = 10.98,P < 0.01).CONCLUSION:Salvianolate improves liver histopathological changes,repairs intestinal mucosa and TJ structure,and enhances ZO-1 expression in the small intestinal mucosa in cirrhotic rats.展开更多
AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intest...AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.展开更多
文摘Epithelial-mesenchymal transition (EMT) is a highly conserved process that has been well characterised in embryogenesis. Studies have shown that the aberrant activation of EMT in adult epithelia can promote tumour metastasis by repressing cell adhesion molecules,including epithelial (E)-cadherin. Reduced intracellular adhesion may allow tumour cells to disseminate and spread throughout the body. A number of transcription proteins of the Snail superfamily have been implicated in EMT. These proteins have been shown to be over-expressed in advanced gastrointestinal (GI) tumours including oesophageal adenocarcinomas,colorectal carcinomas,gastric and pancreatic cancers,with a concomitant reduction in the expression of E-cadherin. Regulators of EMT may provide novel clinical targets to detect GI cancers early,so that cancers previously associated with a poor prognosis such as pancreatic cancer can be diagnosed before they become inoperable. Furthermore,pharmacological therapies designed to inhibit these proteins will aim to prevent local and distant tumour invasion.
基金Supported by National Natural Science Foundation of China,No. 30370438
文摘AIM: To explore the effect of recombinant human interleukin-11 (rhIL-11) on the expressions of interleukin-11 receptor α-chain (IL-11Rα) and an additional signal transducer glycoprotein 130 (gp130) in intestinal epithelium cell line-6 (IEC-6) after neutron irradiation. METHODS: Cultured IEC-6 cells were exposed to 4.0Gy neutron and treated with 100 ng/mL rhIL-11 12 h prior to or immediately after irradiation. The apoptosis and necrosis rates and expressions of IL-11Rα and gp130 were observed by flow cytometry, immunohistochemistry, Western blot and image analysis. RESULTS: The apoptosis rate of IEC-6 cells was increased by irradiation at 6 h (P 〈 0.01), IL-11 stimulation resulted in a decreased apoptosis rate in irradiated IEC-6 cells (P 〈 0.05). In normal control IEC-6 cells, intense immunoreactivity of IL-11Rα was located within the cell membrane and cytoplasm. The level of IL-11Rα expression significantly decreased at 6 h after irradiation (P 〈 0.01) and restored at 24 h after irradiation. In IEC-6 cells treated with both radiation and rhIL-11, the level of IL- 11Rα expression was higher than that of irradiated cells (P 〈 0.05). When it came to gp130 protein, it was located in the cytoplasm of IEC-6 cells. After irradiation, we found a progressive decrease in the expression of gp130 protein (P 〈 0.05) in 48 hours post-radiation, while in rhIL-11-stimulated cells, it came back to normal level at 24 h after irradiation and decreased at 48 h, but was still higher than that of only irradiated cells (P 〈 0.05). CONCLUSION: rhIL-11 can protect IEC-6 cells from neutron irradiation. The protective effect of rhIL-11 might be connected with its ability to up-regulate the expressions of specific ligand-binding subunit IL-11Rα and signal-transducing subunit gp130.
文摘CREB-binding protein (CBP) and its homologue p300 are transcriptional co-activators of various sequence-specific transcription factors that are involved in a wide array of cellular activities, such as DNA repair, cell growth, differentia- tion and apoptosis. Several studies have suggested that CBP and p300 might be considered as tumour suppressors, with their prominent role being the cross-coupling of distinct gene expression patterns in response to various stimuli. They exert their actions mainly via acetylation of histones and other regulatory proteins (e.g. p53). A major paradox in CBP/ p300 function is that they seem capable of contributing to various opposed cellular processes. Respiratory epithelium tumorigenesis represents a complex process of multi-step accumulations of a gamut of genetic and epigenetic aberrations. Transcription modulation through the alternate formation of activating and repressive complexes is the ultimate converging point of these derangements, and CBP/p300 represents key participants in this interplay. Thus, illumination of their molecular actions and interactions could reveal new potential targets for pharmacological interventions in respiratory epithelium carcinogenesis.
文摘AIM: To investigate the expression of SNC73, a transcript of the immunoglobulin α-1 gene (IgA1-H chain), in human epitheliα-derived tumor cells. METHODS: Total RNAs and cell lysates were prepared from five different human epithelial cell lines derived from lung, stomach, liver, skin, and breast, respectively. RT-PCR and immunoblot analysis of these five cell lines were done. Both RT-PCR and immunochemistry were used to detect the expression of SNC73 in these cell lines. We also examined the expression of SNC73 in normal epithelial cells of colon mucosa by in situ hybridization. RT-PCR and immunoblot analysis were used to determine whether the recombination activating gene1/2 (RAG1 and RAG2) is present. The expression of three immunoglobulin transcription factors, EBF, E2A and Pax5, and the heavy chain of IgA1 and two types of light chains of immunoglobulin (κ and λ) in the aforementioned cell lines were analyzed by RT-PCR and immunochemistry, respectively. All the RT-PCR products were analyzed by sequencing. RESULTS: The results of RT-PCR and immunochemistry showed that both mRNA and protein of SNC73 were expressed in five human epitheliα-derived cancer cell lines. These data were further confirmed in the normal epithelial cells of colon mucosa by in situ hybridization. Also, the heavy chain of IgA1 and κ light chain were detected in these cells, but no λ light chain was observed. Both RAG1 and RAG2 were expressed in these human epitheliα-derived cancer cell lines and the sequence was identical to that expressed in pre-B and pre-T cells. In addition to RAG1 and RAG2, the mRNA in one of the immunoglobulin transcription factors, EBF, was also detected in these cell lines, and Pax5 was only expressed in SW480 cells, but no expression of E2A was observed in all the five cell lines. CONCLUSION: Immunoglobulin A1 is originally expressed and V(D)J recombination machine is also present in non-lymphoid cells, suggesting that V(D)J recombination machine mediates the assembly of immunoglobulin A1 in non-lymphoid cells as in prelymphocytes.
文摘Epithelial-to-mesenchymal and mesenchymal-to-epi- thelial transitions are well established biological events which have an important role in not just normal tissue and organ development, but in the pathogenesis of diseases. Increasing evidence has established their presence in the human colon during colorectal carcinogenesis and cancer invasion, chronic inflammation-related fibrosis and in the course of mucosal healing. A large body of evidence supports the role for transforming growth factor-13 and its downstream Smad signaling, the phosphatidylinositol 3'-kinase/Akt/mTOR axis, the Ras-mitogen-activated protein kinase/Snail/Slug and FOXC2 pathway, and Hedgehog signaling and microR- NAs in the development of colorectal cancers via epi- thelial-to-mesenchymal transition. C-met and Frizzled-7, among others, seem to be the principle effectors of mesenchymal-to-epithelial transition, hence have a role not just in mucosal regeneration but in the progression of colonic wall fibrosis. Here we discuss a role for these pathways in the initiation and development of the transition events. A better understanding of their induction and regulation may lead to the identification of pathways and factors that could be potent therapeu- tic targets. The inhibition of epithelial-to-mesenchymal transition using mTOR kinase inhibitors targeting theATP binding pocket and which inhibit both mTORC1 and mTORC2, RNA aptamers or peptide mimetics, such as a Wnt5A-mimetic, may all be useful in both cancer treatment and delaying fibrosis, while the induction of mesenchymal-to-epithelial transition in induced pluripotent stem cells may enhance epithelial healing in the case of severe mucosal damage. The preliminary results of the current studies are promising, but more clinical investigations are needed to develop new and safe therapeutic strategies for diseases of the colon.
基金Supported by the Key Lab of Multi-organ Transplantation of Ministry, College of Medicine, Zhejiang University, Hangzhou,China
文摘AIM: NF-κB, regulate the expression of cytokine-inducible genes involving immune and inflammatory responses, will be potential therapy approach for allograft from rejection. In this study, we use pCMV-IκBαM vector to inhibit NF-κB activation and investigate the effect of pCMV-IκBαM in inhibition of T cells adhesion to endothelial cells. METHODS: The NF-κB activity was detected with pNF-κB reporter gene and electrophoretic mobility shift assay. Expression of cell surface molecules was detected by RT-PCR and flow cytometer. The cell-cell adhesion assay was performed to determine the effect of pCMV-IκBαM in inhibition of T cells adhesion to endothelial cells. RESULTS: We could find that NF-κB activity is inhibited by over-expression of non-degraded IκBα protein. Expression of adhesion molecules like ICAM-1, VCAM-1, and P-selectin as well as cell-cell adhesion were inhibited significantly by transfection of the pCMV-IκBαM vector. CONCLUSION: Our results indicate that the pCMVIκBαM, which inhibit the activity of NF-κB through over-expression of non-degraded IκBα protein, can be used for gene therapy in diseases involving NF-κB activation abnormally like organ transplantation via inhibiting cell adhesion.
基金Supported by National Natural Science Foundation of China (30721063)National Basic Research Program of China (973 Program) (2005CB522402, 2006CB910403)+1 种基金National Laboratory of Medical Molecular Biology grant (2060204)Beijing municipal government grant (YB20081002301)
文摘Objective To study the regulatory mechanism of SATB1 repression in cells other than T cells or erythroid cells, which have high expression level of SATB1. Methods HeLa epithelial cells were treated with either histone deacetylase inhibitor (HDACi) trichostatin A (TSA) or DNA methylation inhibitor 5-Aza-C before detecting SATB1 expression. Luciferase reporter system was applied to measure effects of EZH2 on SATB1 promoter activity. Over-expression or knockdown of EZH2 and subsequent quantitative reverse transcription-polymerase chain reaction were performed to determine the effect of this Polycomb group protein on SATB1 transcription. Chromatin immunoprecipitation (ChIP) assay was applied to measure enrichment of EZH2 and trimethylated H3K27 (H3K27me3) at SATB1 promoter in HeLa cells. K562 cells and Jurkat cells, both having high-level expression of SATB1, were used in the ChIP experiment as controls. Results Both TSA and 5-Aza-C increased SATB1 expression in HeLa cells. Over-expression of EZH2 reduced promoter activity as well as the mRNA level of SATB1, while knockdown of EZH2 apparently enhanced SATB1 expression in HeLa cells but not in K562 cells and Jurkat cells. ChIP assay results suggested that epigenetic silencing of SATB1 by EZH2 in HeLa cells was mediated by trimethylation modification of H3K27. In contrast, enrichment of EZH2 and H3K27me3 was not detected within proximal promoter region of SATB1 in either K562 or Jurkat cells. Conclusion SATB1 is a bona fide EZH2 target gene in HeLa cells and the repression of SATB1 by EZH2 may be mediated by trimethylation modification on H3K27.
基金supported by the National Natural Science Foundation of China (Grant No. 81060218)Guangxi Natural Science Foundation (Grant No. 2012GXNSFAA053157)
文摘Objective: To study explores the effect of HLEC on the secreted proteins of epithelial ovarian cancer (EOC) cells (SKOV3-PM4) with directional highly lymphatic metastasis. Methods: Supernatants of four groups of cultured cells, namely, SKOV3 (A), SKOV3+HLEC (B), SKOV3-PM4 (C), SKOV3-PM4+HLEC (D), were collected, and their proteins were detected by antibody arrays and iTRAOcZD-LC-MALDI- TOF/TOF/MS. Significantly differential proteins were further analyzed via bioinformatics and validated in human serums and cell media via ELISA. Results: Results of antibody arrays and mass spectrometry demonstrated that GRN and VEGFA were upregulated in group C (compared with group A), whereas IGFBP7 and SPARC were downregulated in group D (compared with group C). Comprehensive bioinformatics analysis results showed that IGFBP7 and VEGFA were closely linked to each other. Further validation with serums showed statistical significance in VEGFA and IGFBP7 levels among groups of patients with ovarian cancers, benign tumors, and control groups. Two proteins were upegulated in the first group. VEGFA in the control group was downregulated. For IGFBP, upregulation in the control group and down-regulation in the first group were also observed. Conclusion: The HLEC microenvironment is closely associated with directional metastasis to lymph nodes and with differential proteins including cell stromal proteins and adhesion factors. The upregulation of VEGFA and GRN and the downregulation of SPARC and IGFBP7 are closely associated with directional metastasis to lymph nodes in EOC cells.
基金the National Natural Sciences Foundation of China(81172376,31270209)the 100 talent-program of the Chinese Academy of Sciencesthe State Key Laboratory of Virology for financial support
文摘Prion diseases are a group of neurodegenerative diseases that are fatal. The study of these unique diseases in China is hampered by a lack of resources. Amongst the most important resources for biological study are monoclonal antibodies. Here, we characterize a panel of monoclonal antibodies specific for cellular prion protein by enzyme-linked immunosorbent assay(ELISA), immunofluorescent staining, flow cytometry, and western blotting. We identify several antibodies that can be used for specific applications and we demonstrate that there is no prion protein expression in human pancreatic ductal epithelial cells(HPDC).
基金Supported by Foundation of Chinese Medicine in Zhejiang Province Science and Technology,No.Z0102B002
文摘AIM:To study the effect of salvianolate on tight junctions(TJs) and zonula occludens protein 1(ZO-1) in small intestinal mucosa of cirrhotic rats.METHODS:Cirrhosis was induced using carbon tetrachloride.Rats were randomly divided into the untreated group,low-dose salvianolate(12 mg/kg) treatment group,medium-dose salvianolate(24 mg/kg) treatment group,and high-dose salvianolate(48 mg/kg) treatment group,and were treated for 2 wk.Another 10 healthy rats served as the normal control group.Histological changes in liver tissue samples were observed under a light microscope.We evaluated morphologic indices of ileal mucosa including intestinal villi width and thickness of mucosa and intestinal wall using a pathological image analysis system.Ultrastructural changes in small intestinal mucosa were investigated in the five groups using transmission electron microscopy.The changes in ZO-1 expression,a tight junction protein,were analyzed by immunocytochemistry.The staining index was calculated as the product of the staining intensity score and the proportion of positive cells.RESULTS:In the untreated group,hepatocytes showed a disordered arrangement,fatty degeneration was extensive,swelling was obvious,and disorganized lobules were divided by collagen fibers in hepatic tissue,which were partly improved in the salvianolate treated groups.In the untreated group,abundant lymphocytes infiltrated the fibrous tissue with proliferation of bile ducts,and collagen fibers gradually decreased and damaged hepatic lobules were partly repaired following salvianolate treatment.Compared with the untreated group,no differences in intestinal villi width between the five groups were observed.The villi height as well as mucosa and intestinal wall thickness gradually thickened with salvianolate treatment and were significantly shorter in the untreated group compared with those in the salvianolate treatment groups and normal group(P < 0.01).The number of microvilli decreased and showed irregular lengths and arrangements in the untreated group.The intercellular space between epithelial cells was wider.The TJs were discontinuous,which indicated disruption in TJ morphology in the untreated group.In the treated groups,the microvilli in the intestinal epithelium were regular and the TJs were gradually integrated and distinct.The expression of ZO-1 decreased in the small intestine of the untreated cirrhotic rats.The high expression rate of ZO-1 in ileal mucosa in the untreated group was significantly lower than that in the medium-dose salvianolate group(21.43% vs 64.29%,χ 2 = 5.25,P < 0.05),high-dose salvianolate group(21.43% vs 76.92%,χ 2 = 8.315,P < 0.01) and normal group(21.43% vs 90%,χ 2 = 10.98,P < 0.01).CONCLUSION:Salvianolate improves liver histopathological changes,repairs intestinal mucosa and TJ structure,and enhances ZO-1 expression in the small intestinal mucosa in cirrhotic rats.
基金Supported by the National Basic Science and Development Programme (973 Programme),No.G1999054204 National Natural Science Foundation of China, No. 30170966, 30230370 National High-Technology Programme (863 Programme), No. 2001AA215131
文摘AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.