在线性代数中,矩阵 A 与它的伴随矩阵 A<sup>*</sup>之间有一些特殊的关系,本文给出几个命题,并证明之。命题一:若 A 为非奇异矩阵,则 A<sup>*</sup>也为非奇异矩阵。证明:当 A 为 n (n≥2)阶非奇异矩阵时,|A...在线性代数中,矩阵 A 与它的伴随矩阵 A<sup>*</sup>之间有一些特殊的关系,本文给出几个命题,并证明之。命题一:若 A 为非奇异矩阵,则 A<sup>*</sup>也为非奇异矩阵。证明:当 A 为 n (n≥2)阶非奇异矩阵时,|A|≠0,且A<sup>*</sup>=|A|A<sup>-1</sup>,所以|A<sup>*</sup>|=det(|A|A<sup>-1</sup>)=|A|<sup>n</sup>·|A<sup>-1</sup>|=|A|<sup>n</sup>·|A|<sup>-1</sup>=|A|<sup>n-1</sup>≠0,从而A<sup>*</sup>为非奇异矩阵。命题二:若 A 为正交矩阵,则 A<sup>*</sup>也为正交矩阵。证明:A 为正交矩阵,则 A<sup>T</sup>A=AA<sup>T</sup>=E 且|A|<sup>2</sup>=1,A<sup>-1</sup>=A<sup>T</sup>,又 A<sup>*</sup>=|A|A<sup>-1</sup>,故 A<sup>*</sup>(A<sup>*</sup>)<sup>T</sup>=|A|A<sup>-1</sup>(|A|A<sup>-1</sup>)<sup>T</sup>=|A|<sup>2</sup>A<sup>-1</sup>(A<sup>-1</sup>)<sup>T</sup>=A<sup>T</sup>A=E,从而 A 为正交矩阵。命题三:若 A 为对称矩阵,则 A<sup>*</sup>也为对称矩阵。证明:由 A 为对称矩阵,得A<sup>T</sup>=A,又(A<sup>*</sup>)<sup>T</sup>=(A<sup>T</sup>)<sup>*</sup>=A<sup>*</sup>,所以 A<sup>*</sup>也为对称矩阵。展开更多
Vagueness of language has long been explored in the fields of philosophy and logic. Although Zadeh put forward fuzzy sets theory which was considered to be a decent quantitative instrument for the study of language va...Vagueness of language has long been explored in the fields of philosophy and logic. Although Zadeh put forward fuzzy sets theory which was considered to be a decent quantitative instrument for the study of language vagueness, the source of vagueness still remains a disputed issue. As the study of vagueness goes further, researchers attached more and more attention to the relation between language-cognition- reality, especially in the cognitive field. Thus we found that it would be more satisfied with the issue to construct a relation-model between five factors: reality, concept, human, language, and context. This model, which is different from the semantic triangle in explicating the factors, human and context, may help to explain the nature of vagueness and reclassify the language vagueness.展开更多
文摘在线性代数中,矩阵 A 与它的伴随矩阵 A<sup>*</sup>之间有一些特殊的关系,本文给出几个命题,并证明之。命题一:若 A 为非奇异矩阵,则 A<sup>*</sup>也为非奇异矩阵。证明:当 A 为 n (n≥2)阶非奇异矩阵时,|A|≠0,且A<sup>*</sup>=|A|A<sup>-1</sup>,所以|A<sup>*</sup>|=det(|A|A<sup>-1</sup>)=|A|<sup>n</sup>·|A<sup>-1</sup>|=|A|<sup>n</sup>·|A|<sup>-1</sup>=|A|<sup>n-1</sup>≠0,从而A<sup>*</sup>为非奇异矩阵。命题二:若 A 为正交矩阵,则 A<sup>*</sup>也为正交矩阵。证明:A 为正交矩阵,则 A<sup>T</sup>A=AA<sup>T</sup>=E 且|A|<sup>2</sup>=1,A<sup>-1</sup>=A<sup>T</sup>,又 A<sup>*</sup>=|A|A<sup>-1</sup>,故 A<sup>*</sup>(A<sup>*</sup>)<sup>T</sup>=|A|A<sup>-1</sup>(|A|A<sup>-1</sup>)<sup>T</sup>=|A|<sup>2</sup>A<sup>-1</sup>(A<sup>-1</sup>)<sup>T</sup>=A<sup>T</sup>A=E,从而 A 为正交矩阵。命题三:若 A 为对称矩阵,则 A<sup>*</sup>也为对称矩阵。证明:由 A 为对称矩阵,得A<sup>T</sup>=A,又(A<sup>*</sup>)<sup>T</sup>=(A<sup>T</sup>)<sup>*</sup>=A<sup>*</sup>,所以 A<sup>*</sup>也为对称矩阵。
文摘Vagueness of language has long been explored in the fields of philosophy and logic. Although Zadeh put forward fuzzy sets theory which was considered to be a decent quantitative instrument for the study of language vagueness, the source of vagueness still remains a disputed issue. As the study of vagueness goes further, researchers attached more and more attention to the relation between language-cognition- reality, especially in the cognitive field. Thus we found that it would be more satisfied with the issue to construct a relation-model between five factors: reality, concept, human, language, and context. This model, which is different from the semantic triangle in explicating the factors, human and context, may help to explain the nature of vagueness and reclassify the language vagueness.