Numerical analysis of the optimal supporting time and long-term stability index of the surrounding rocks in the underground plant of Xiangjiaba hydro-power station was carried out based on the rheological theory. Firs...Numerical analysis of the optimal supporting time and long-term stability index of the surrounding rocks in the underground plant of Xiangjiaba hydro-power station was carried out based on the rheological theory. Firstly,the mechanical parameters of each rock group were identified from the experimental data; secondly,the rheological calculation and analysis for the cavern in stepped excavation without supporting were made; finally,the optimal time for supporting at the characteristic point in a typical section was obtained while the creep rate and displacement after each excavation step has satisfied the criterion of the optimal supporting time. Excavation was repeated when the optimal time for supporting was identified,and the long-term stability creep time and the maximum creep deformation of the characteristic point were determined in accordance with the criterion of long-term stability index. It is shown that the optimal supporting time of the characteristic point in the underground plant of Xiangjiaba hydro-power station is 5-8 d,the long-term stability time of the typical section is 126 d,and the corresponding largest creep deformation is 24.30 mm. While the cavern is supported,the cavern deformation is significantly reduced and the stress states of the surrounding rock masses are remarkably improved.展开更多
Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, de...Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.展开更多
Design of rib support systems in U.S. coal mines is based primarily on local practices and experience. A better understanding of current rib support practices in U.S. coal mines is crucial for developing a sound engin...Design of rib support systems in U.S. coal mines is based primarily on local practices and experience. A better understanding of current rib support practices in U.S. coal mines is crucial for developing a sound engineering rib support design tool. The objective of this paper is to analyze the current practices of rib control in U.S. coal mines. Twenty underground coal mines were studied representing various coal basins,coal seams,geology,loading conditions,and rib control strategies. The key findings are:(1) any rib design guideline or tool should take into account external rib support as well as internal bolting;(2) rib bolts on their own cannot contain rib spall,especially in soft ribs subjected to significant load—external rib control devices such as mesh are required in such cases to contain rib sloughing;(3) the majority of the studied mines follow the overburden depth and entry height thresholds recommended by the Program Information Bulletin 11-29 issued by the Mine Safety and Health Administration;(4) potential rib instability occurred when certain geological features prevailed—these include draw slate and/or bone coal near the rib/roof line,claystone partings,and soft coal bench overlain by rock strata;(5) 47% of the studied rib spall was classified as blocky—this could indicate a high potential of rib hazards; and(6) rib injury rates of the studied mines for the last three years emphasize the need for more rib control management for mines operating at overburden depths between 152.4 m and 304.8 m.展开更多
基金Projects(50911130366, 50979030) supported by the National Natural Science Foundation of ChinaProject(2008BAB29B01) supported by the National Key Technology R&D Program of China
文摘Numerical analysis of the optimal supporting time and long-term stability index of the surrounding rocks in the underground plant of Xiangjiaba hydro-power station was carried out based on the rheological theory. Firstly,the mechanical parameters of each rock group were identified from the experimental data; secondly,the rheological calculation and analysis for the cavern in stepped excavation without supporting were made; finally,the optimal time for supporting at the characteristic point in a typical section was obtained while the creep rate and displacement after each excavation step has satisfied the criterion of the optimal supporting time. Excavation was repeated when the optimal time for supporting was identified,and the long-term stability creep time and the maximum creep deformation of the characteristic point were determined in accordance with the criterion of long-term stability index. It is shown that the optimal supporting time of the characteristic point in the underground plant of Xiangjiaba hydro-power station is 5-8 d,the long-term stability time of the typical section is 126 d,and the corresponding largest creep deformation is 24.30 mm. While the cavern is supported,the cavern deformation is significantly reduced and the stress states of the surrounding rock masses are remarkably improved.
文摘Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.
文摘Design of rib support systems in U.S. coal mines is based primarily on local practices and experience. A better understanding of current rib support practices in U.S. coal mines is crucial for developing a sound engineering rib support design tool. The objective of this paper is to analyze the current practices of rib control in U.S. coal mines. Twenty underground coal mines were studied representing various coal basins,coal seams,geology,loading conditions,and rib control strategies. The key findings are:(1) any rib design guideline or tool should take into account external rib support as well as internal bolting;(2) rib bolts on their own cannot contain rib spall,especially in soft ribs subjected to significant load—external rib control devices such as mesh are required in such cases to contain rib sloughing;(3) the majority of the studied mines follow the overburden depth and entry height thresholds recommended by the Program Information Bulletin 11-29 issued by the Mine Safety and Health Administration;(4) potential rib instability occurred when certain geological features prevailed—these include draw slate and/or bone coal near the rib/roof line,claystone partings,and soft coal bench overlain by rock strata;(5) 47% of the studied rib spall was classified as blocky—this could indicate a high potential of rib hazards; and(6) rib injury rates of the studied mines for the last three years emphasize the need for more rib control management for mines operating at overburden depths between 152.4 m and 304.8 m.