The basics of mining landslides were first summed up based on the analysis ofactual materials by the application of mining subsidence and landslide theories. Further,the mechanism of along-layer landslide by mining wa...The basics of mining landslides were first summed up based on the analysis ofactual materials by the application of mining subsidence and landslide theories. Further,the mechanism of along-layer landslide by mining was studied with the example of theXiangshan mining landslide at Hancheng, Shaanxi Province. Meanwhile, the state ofstress, and the mechanism of deformation and destruction of the Xiangshan mining slopewere analyzed by the Finite Element Method.展开更多
The purpose of this study was to understand the reasons why frequent positive cloud-to-ground(+CG) flashes occur in severe thunderstorms. A three-dimensional dynamics-electrification coupled model was used to simulate...The purpose of this study was to understand the reasons why frequent positive cloud-to-ground(+CG) flashes occur in severe thunderstorms. A three-dimensional dynamics-electrification coupled model was used to simulate a severe thunderstorm to permit analysis of the conditions that might easily cause +CG flashes. The results showed that strong updrafts play an important role in the occurrence of intracloud flashes. However, frequent +CG flashes require not only strong updrafts but also strong downdrafts in the lower cloud region, conditions that correspond to the later phase of the mature stage and the period of the heaviest solid precipitation of a thunderstorm. During this stage, strong updrafts elevated each charge area in the updraft region to a higher level, which resulted in an inverted tripole charge structure. A wide mid-level region of strong positive charge caused largely by positively charged graupel, presented in the middle of the updraft region because of a non-inductive ice-ice collisional charging mechanism. The charge structure in the downdraft region was consistently more complex and revealed several vertically stacked charge regions, alternating in polarity. Much of the graupel/hail outside the updrafts was lowered to cloud-base by strong downdrafts. In this area, the graupel/hail was charged negatively because of the transportation of negatively charged graupel/hail from higher regions of negative charge in the updrafts, and via the inductive charging mechanism of collisions between graupel/hail and cloud droplets at the bottom of the cloud. Consequently, a large region of negative charge formed near the ground. This meant that +CG flashes were initiated more easily in the lower inverted dipole, i.e., the middle region of positive charge and lower region of negative charge. Frequent +CG flashes began almost synchronously with dramatic increases in the storm updrafts, hail volume, and total flash rate. Therefore, the occurrence of +CG flashes appears a good indicator of storm intensification and it could have some use as a predictor of severe weather in the form of hail.展开更多
River basin reservoir construction affects water and sediment transport processes in downstream reaches. The downstream impact of the Three Gorges Projects (TGP) has started to become apparent: (1) reduction in f...River basin reservoir construction affects water and sediment transport processes in downstream reaches. The downstream impact of the Three Gorges Projects (TGP) has started to become apparent: (1) reduction in flood duration and discharge, and significant reduction in sediment load. Although there was some restoration in downstream sediment load, the total amount did not exceed the pre-impoundment annual average; (2) in 2003-2014 the d 〉 0.125 mm (coarse sand) load was restored to some degree, and to a maximum at Jianli Station, which was mainly at the pre-impoundment average. After restoration, erosion and deposition characteristics of the sediment was identical to that before impoundment. The degree of restoration during 2008-2014 was less than during 2003-2007; (3) after TGP im- poundment, there was some restoration in d 〈 0.125 mm (fine sand) sediment load, however, it was {ower than the pre-impoundment average; (4) due to riverbed compensation, the d 〉 0.125 mm sediment load recovered to a certain degree after impoundment, however, the total did not exceed 4400x104 t/y. This was mainly limited by flood duration and the average flow rate, and was less affected by upstream main stream, tributaries, or lakes. Restoration of d 〈 0.125 mm suspended sediment was largely controlled by upstream main stream, tributaries, and lakes, as well as by riverbed compensation. Due to bed armoring, riverbed fine suspended sediment compensation capability was weakened; (5) during 2003-2007 and 2008-2014, Yichang to Zhicheng and upper Jingjiang experienced coarse and fine erosion,lower Jingjiang experienced coarse deposition and fine erosion, Hankou to Datong had coarse deposition and fine erosion, and Chenglingji and Hankou was characterized by coarse deposition and fine sand erosion in 2003-2007, and coarse and fine erosion in 2008-2014. This difference was controlled by flood duration and number at Luoshan Station.展开更多
基金Supported by the Natural Science Foundation of Shaanxi Province,China (SJ08D01)
文摘The basics of mining landslides were first summed up based on the analysis ofactual materials by the application of mining subsidence and landslide theories. Further,the mechanism of along-layer landslide by mining was studied with the example of theXiangshan mining landslide at Hancheng, Shaanxi Province. Meanwhile, the state ofstress, and the mechanism of deformation and destruction of the Xiangshan mining slopewere analyzed by the Finite Element Method.
基金supported by the National Key Basic Research Program of China (Grant No. 2014CB441403)the National Natural Science Foundation of China (Grant No. 41275008)+1 种基金R&D Special Fund for Public Welfare Industry (Grant No. GYHY201306069)Open Project of Key Laboratory of Meteorological Disaster of Ministry of Education (Grant No. KLME1004)
文摘The purpose of this study was to understand the reasons why frequent positive cloud-to-ground(+CG) flashes occur in severe thunderstorms. A three-dimensional dynamics-electrification coupled model was used to simulate a severe thunderstorm to permit analysis of the conditions that might easily cause +CG flashes. The results showed that strong updrafts play an important role in the occurrence of intracloud flashes. However, frequent +CG flashes require not only strong updrafts but also strong downdrafts in the lower cloud region, conditions that correspond to the later phase of the mature stage and the period of the heaviest solid precipitation of a thunderstorm. During this stage, strong updrafts elevated each charge area in the updraft region to a higher level, which resulted in an inverted tripole charge structure. A wide mid-level region of strong positive charge caused largely by positively charged graupel, presented in the middle of the updraft region because of a non-inductive ice-ice collisional charging mechanism. The charge structure in the downdraft region was consistently more complex and revealed several vertically stacked charge regions, alternating in polarity. Much of the graupel/hail outside the updrafts was lowered to cloud-base by strong downdrafts. In this area, the graupel/hail was charged negatively because of the transportation of negatively charged graupel/hail from higher regions of negative charge in the updrafts, and via the inductive charging mechanism of collisions between graupel/hail and cloud droplets at the bottom of the cloud. Consequently, a large region of negative charge formed near the ground. This meant that +CG flashes were initiated more easily in the lower inverted dipole, i.e., the middle region of positive charge and lower region of negative charge. Frequent +CG flashes began almost synchronously with dramatic increases in the storm updrafts, hail volume, and total flash rate. Therefore, the occurrence of +CG flashes appears a good indicator of storm intensification and it could have some use as a predictor of severe weather in the form of hail.
基金National Natural Science Foundation of China,No.51479146,No.51579123,No.51509012Fundamental Research Funds for Central Welfare Research Institutes,No.TKS160103+2 种基金No.TKS150102The National Key Research&Development Programs,No.2013BAB12B01National Key Research Program of China,No.2016YFC0402106
文摘River basin reservoir construction affects water and sediment transport processes in downstream reaches. The downstream impact of the Three Gorges Projects (TGP) has started to become apparent: (1) reduction in flood duration and discharge, and significant reduction in sediment load. Although there was some restoration in downstream sediment load, the total amount did not exceed the pre-impoundment annual average; (2) in 2003-2014 the d 〉 0.125 mm (coarse sand) load was restored to some degree, and to a maximum at Jianli Station, which was mainly at the pre-impoundment average. After restoration, erosion and deposition characteristics of the sediment was identical to that before impoundment. The degree of restoration during 2008-2014 was less than during 2003-2007; (3) after TGP im- poundment, there was some restoration in d 〈 0.125 mm (fine sand) sediment load, however, it was {ower than the pre-impoundment average; (4) due to riverbed compensation, the d 〉 0.125 mm sediment load recovered to a certain degree after impoundment, however, the total did not exceed 4400x104 t/y. This was mainly limited by flood duration and the average flow rate, and was less affected by upstream main stream, tributaries, or lakes. Restoration of d 〈 0.125 mm suspended sediment was largely controlled by upstream main stream, tributaries, and lakes, as well as by riverbed compensation. Due to bed armoring, riverbed fine suspended sediment compensation capability was weakened; (5) during 2003-2007 and 2008-2014, Yichang to Zhicheng and upper Jingjiang experienced coarse and fine erosion,lower Jingjiang experienced coarse deposition and fine erosion, Hankou to Datong had coarse deposition and fine erosion, and Chenglingji and Hankou was characterized by coarse deposition and fine sand erosion in 2003-2007, and coarse and fine erosion in 2008-2014. This difference was controlled by flood duration and number at Luoshan Station.