The modern Yellow River delta is formed near the estuary of the Yellow River with the characteristics of short formation time, efficient sedimentation rate and loose structure which make sediments prone to be compacte...The modern Yellow River delta is formed near the estuary of the Yellow River with the characteristics of short formation time, efficient sedimentation rate and loose structure which make sediments prone to be compacted and consolidate under the geostatic stress and overburden stress. It is one of the key areas with land subsidence disasters in China, bringing a series of safety hazards to production and living. Based on the data of massive surface cores and ten drill holes ranging from 12 to 40 m obtained from the northern modern Yellow River subaqueous delta, the inversion method suitable for the calculation of consolidation settlement characteristics of the modern Yellow River subaqueous delta is discussed, and the consolidation settlement characteristics of the delta sediments are inversed and predicted in this paper. The actual void ratio of the delta sediments at the depth from 3 to 15 m shows a significant power function relationship with the depth, while the void ratio of the sediments below 15 m changes little with depth. The pre-consolidation settlement(from deposition to sampling) of the delta sediments is between 0.91 and 1.96 m, while the consolidation settlement of unit depth is between 9.6 and 14.0 cm m^(-1). The post-consolidation settlement(from sampling to stable) of the subaqueous delta sediments is between 0.65 and 1.56 m in the later stage, and the consolidation settlement of unit depth is between 7.6 and 13.1 cm m^(-1) under the overburden stress. The delta sediments with a buried depth of 3 to 7 m contribute the most to the possible consolidation settlement in the later stage.展开更多
This study on the distribution features of petroleum hydrocarbon in water and sediment off the Fujian shore using data obtained from the baseline research on oceanic contamination in Fujian showed that: during the res...This study on the distribution features of petroleum hydrocarbon in water and sediment off the Fujian shore using data obtained from the baseline research on oceanic contamination in Fujian showed that: during the research period, petroleum hydrocarbon concentrations in water varied from 5.77 μg/L to 37.28 μg/L, averaged 14.48 μg/L; was lower in the wet season than in the dry season; and was highest in the Minjiang Estuary and Jiulong Estuary in both seasons. The petroleum hydrocarbon concentrations in shore sediment varied from 14.48 mg/kg to 784.36 mg/kg, averaged 133.3 mg/kg, and was closely related to sediment types (granularity).展开更多
The effects of excavation unloading, construction reloading and underground water on basal heave of excavation projects were presented and analyzed based on the measurement results of an underground urban complex whic...The effects of excavation unloading, construction reloading and underground water on basal heave of excavation projects were presented and analyzed based on the measurement results of an underground urban complex which was located in Shanghai. The effects on water pressure and building settlements were analyzed as well. The numerical analyses by finite element method (FEM) were conducted. It showed that the soil under the excavation base continued to heave during the following certain construction stage. It also found that the bearing capacity of uplift piles which supported the buildings affected the structure quality significantly. The conclusions can be applied in future projects.展开更多
River basin reservoir construction affects water and sediment transport processes in downstream reaches. The downstream impact of the Three Gorges Projects (TGP) has started to become apparent: (1) reduction in f...River basin reservoir construction affects water and sediment transport processes in downstream reaches. The downstream impact of the Three Gorges Projects (TGP) has started to become apparent: (1) reduction in flood duration and discharge, and significant reduction in sediment load. Although there was some restoration in downstream sediment load, the total amount did not exceed the pre-impoundment annual average; (2) in 2003-2014 the d 〉 0.125 mm (coarse sand) load was restored to some degree, and to a maximum at Jianli Station, which was mainly at the pre-impoundment average. After restoration, erosion and deposition characteristics of the sediment was identical to that before impoundment. The degree of restoration during 2008-2014 was less than during 2003-2007; (3) after TGP im- poundment, there was some restoration in d 〈 0.125 mm (fine sand) sediment load, however, it was {ower than the pre-impoundment average; (4) due to riverbed compensation, the d 〉 0.125 mm sediment load recovered to a certain degree after impoundment, however, the total did not exceed 4400x104 t/y. This was mainly limited by flood duration and the average flow rate, and was less affected by upstream main stream, tributaries, or lakes. Restoration of d 〈 0.125 mm suspended sediment was largely controlled by upstream main stream, tributaries, and lakes, as well as by riverbed compensation. Due to bed armoring, riverbed fine suspended sediment compensation capability was weakened; (5) during 2003-2007 and 2008-2014, Yichang to Zhicheng and upper Jingjiang experienced coarse and fine erosion,lower Jingjiang experienced coarse deposition and fine erosion, Hankou to Datong had coarse deposition and fine erosion, and Chenglingji and Hankou was characterized by coarse deposition and fine sand erosion in 2003-2007, and coarse and fine erosion in 2008-2014. This difference was controlled by flood duration and number at Luoshan Station.展开更多
基金financially supported by the Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology (No. MGQNLM-KF20 1715)the National Natural Science Foundation of ChinaShandong Joint Fund for Marine Science Research Centers (No. U1606401)+1 种基金the Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes (No. 2015G08)the National Science Foundation for Young Scientists of China (No. 41206054)
文摘The modern Yellow River delta is formed near the estuary of the Yellow River with the characteristics of short formation time, efficient sedimentation rate and loose structure which make sediments prone to be compacted and consolidate under the geostatic stress and overburden stress. It is one of the key areas with land subsidence disasters in China, bringing a series of safety hazards to production and living. Based on the data of massive surface cores and ten drill holes ranging from 12 to 40 m obtained from the northern modern Yellow River subaqueous delta, the inversion method suitable for the calculation of consolidation settlement characteristics of the modern Yellow River subaqueous delta is discussed, and the consolidation settlement characteristics of the delta sediments are inversed and predicted in this paper. The actual void ratio of the delta sediments at the depth from 3 to 15 m shows a significant power function relationship with the depth, while the void ratio of the sediments below 15 m changes little with depth. The pre-consolidation settlement(from deposition to sampling) of the delta sediments is between 0.91 and 1.96 m, while the consolidation settlement of unit depth is between 9.6 and 14.0 cm m^(-1). The post-consolidation settlement(from sampling to stable) of the subaqueous delta sediments is between 0.65 and 1.56 m in the later stage, and the consolidation settlement of unit depth is between 7.6 and 13.1 cm m^(-1) under the overburden stress. The delta sediments with a buried depth of 3 to 7 m contribute the most to the possible consolidation settlement in the later stage.
文摘This study on the distribution features of petroleum hydrocarbon in water and sediment off the Fujian shore using data obtained from the baseline research on oceanic contamination in Fujian showed that: during the research period, petroleum hydrocarbon concentrations in water varied from 5.77 μg/L to 37.28 μg/L, averaged 14.48 μg/L; was lower in the wet season than in the dry season; and was highest in the Minjiang Estuary and Jiulong Estuary in both seasons. The petroleum hydrocarbon concentrations in shore sediment varied from 14.48 mg/kg to 784.36 mg/kg, averaged 133.3 mg/kg, and was closely related to sediment types (granularity).
基金the National Natural Science Foundation of China (No. 50679041)
文摘The effects of excavation unloading, construction reloading and underground water on basal heave of excavation projects were presented and analyzed based on the measurement results of an underground urban complex which was located in Shanghai. The effects on water pressure and building settlements were analyzed as well. The numerical analyses by finite element method (FEM) were conducted. It showed that the soil under the excavation base continued to heave during the following certain construction stage. It also found that the bearing capacity of uplift piles which supported the buildings affected the structure quality significantly. The conclusions can be applied in future projects.
基金National Natural Science Foundation of China,No.51479146,No.51579123,No.51509012Fundamental Research Funds for Central Welfare Research Institutes,No.TKS160103+2 种基金No.TKS150102The National Key Research&Development Programs,No.2013BAB12B01National Key Research Program of China,No.2016YFC0402106
文摘River basin reservoir construction affects water and sediment transport processes in downstream reaches. The downstream impact of the Three Gorges Projects (TGP) has started to become apparent: (1) reduction in flood duration and discharge, and significant reduction in sediment load. Although there was some restoration in downstream sediment load, the total amount did not exceed the pre-impoundment annual average; (2) in 2003-2014 the d 〉 0.125 mm (coarse sand) load was restored to some degree, and to a maximum at Jianli Station, which was mainly at the pre-impoundment average. After restoration, erosion and deposition characteristics of the sediment was identical to that before impoundment. The degree of restoration during 2008-2014 was less than during 2003-2007; (3) after TGP im- poundment, there was some restoration in d 〈 0.125 mm (fine sand) sediment load, however, it was {ower than the pre-impoundment average; (4) due to riverbed compensation, the d 〉 0.125 mm sediment load recovered to a certain degree after impoundment, however, the total did not exceed 4400x104 t/y. This was mainly limited by flood duration and the average flow rate, and was less affected by upstream main stream, tributaries, or lakes. Restoration of d 〈 0.125 mm suspended sediment was largely controlled by upstream main stream, tributaries, and lakes, as well as by riverbed compensation. Due to bed armoring, riverbed fine suspended sediment compensation capability was weakened; (5) during 2003-2007 and 2008-2014, Yichang to Zhicheng and upper Jingjiang experienced coarse and fine erosion,lower Jingjiang experienced coarse deposition and fine erosion, Hankou to Datong had coarse deposition and fine erosion, and Chenglingji and Hankou was characterized by coarse deposition and fine sand erosion in 2003-2007, and coarse and fine erosion in 2008-2014. This difference was controlled by flood duration and number at Luoshan Station.