Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean...Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean surface backscattering, the modulation of sea surface short wave spectrum by the variations in sea surface currents, and the modulation of sea surface currents by the underwater topography. The first process is described usually by Bragg scattering theory because the incident angle of SAR is always between 20°-70°. The second process is described by the action balance equation. The third process is described by an ocean hydrodynamic model. Based on the SAR imaging mechanism for underwater topography, an underwater topography SAR detection model and a simplified method for its calculation are introduced. In the detection model, a two-dimensional hydrodynamic model – the shallow water model is used to describe the motion of tidal current. Due to the difficulty of determining the expression of SAR backscattering cross section in which some terms can not be determined, the backscattering cross section of SAR image used in the underwater topography SAR detection is pro-processed by the simulated SAR image of the coarse-grid water depth to simplify the calculation. Taiwan Shoal, located at the southwest outlet of Taiwan Strait, is selected as an evaluation area for this technique due to the occurrence of hundreds of sand waves. The underwater topography of Taiwan Shoal was detected by two scenes of ERS-2 SAR images which were acquired on 9 January 2000 and 6 June 2004. The detection results are compared with in situ measured water depths for three profiles. The average absolute and relative errors of the best detection result are 2.23 m and 7.5 %, respectively. These show that the detection model and the simplified method introduced in the paper is feasible.展开更多
Underground brine samples were collected along the southern coast of the Laizhou Bay, Shangdong, China in two field investigations in 2003. The brines are confined in the Quaternary sediment and underwent a series of ...Underground brine samples were collected along the southern coast of the Laizhou Bay, Shangdong, China in two field investigations in 2003. The brines are confined in the Quaternary sediment and underwent a series of geochemical changes. The redox states of these brines were assessed qualitatively based on the measurements of Eh and redox-sensitive species such as DO, NO NO~, Mn2+, Fe2+, SO4^2- in the brines. The redox condition of the underground brine is anoxic, and the redox reactions that controlled the redox potential of brines should be Fe(Ⅲ) reduction and sulfate reduction.展开更多
The past six years (2008-2014) was a prosperous time for exploration and production in the dGOM (deepwater Gulf of Mexico). Recent exploration and production activities can be divided into three major categories:...The past six years (2008-2014) was a prosperous time for exploration and production in the dGOM (deepwater Gulf of Mexico). Recent exploration and production activities can be divided into three major categories: drilling new wildcat wells, appraising and developing newly discovered fields and enhanced oil recovery of mature fields. Seismic imaging, complex geology, high pressure drilling, greater depth, and higher temperature are key challenges for the exploration and production of dGOM reservoirs. Complex geology includes salt-related structures and traps, reservoir compartmentalization, and the sequence stratigraphy of turbidite reservoirs. Turbidite sequence stratigraphy helps the asset team to fred the best target intervals. Sheet and channelized sandstones with good downdip aquifer support are preferred reservoir conditions. All the drilling, development and production challenges are related to high pressure, greater depth, higher temperature and lack of existing field analogs. Various IOR (improved oil recovery) methods are studied and applied in the development stage of the Wilcox fields, which have an average primary recovery factor of 10%-15%. With ideal tabular reservoir geometry and IOR methods, recovery factor of the Wilcox reservoirs can reach up to 42% of OOIP (origional oil in place) through the field life cycle.展开更多
基金Supported by National Natural Science Foundation of China (Nos. 60672159 & 60890075)the State Oceanic Administration Marine Science Foundation for Youths (No.2009421)+1 种基金the Special Funds for Marine Commonweal Research (No. 200705027)the Special Funds for Basic Scientific Research Project of the First Institute of Oceanography, S.O.A (No. 2008T29)
文摘Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean surface backscattering, the modulation of sea surface short wave spectrum by the variations in sea surface currents, and the modulation of sea surface currents by the underwater topography. The first process is described usually by Bragg scattering theory because the incident angle of SAR is always between 20°-70°. The second process is described by the action balance equation. The third process is described by an ocean hydrodynamic model. Based on the SAR imaging mechanism for underwater topography, an underwater topography SAR detection model and a simplified method for its calculation are introduced. In the detection model, a two-dimensional hydrodynamic model – the shallow water model is used to describe the motion of tidal current. Due to the difficulty of determining the expression of SAR backscattering cross section in which some terms can not be determined, the backscattering cross section of SAR image used in the underwater topography SAR detection is pro-processed by the simulated SAR image of the coarse-grid water depth to simplify the calculation. Taiwan Shoal, located at the southwest outlet of Taiwan Strait, is selected as an evaluation area for this technique due to the occurrence of hundreds of sand waves. The underwater topography of Taiwan Shoal was detected by two scenes of ERS-2 SAR images which were acquired on 9 January 2000 and 6 June 2004. The detection results are compared with in situ measured water depths for three profiles. The average absolute and relative errors of the best detection result are 2.23 m and 7.5 %, respectively. These show that the detection model and the simplified method introduced in the paper is feasible.
文摘Underground brine samples were collected along the southern coast of the Laizhou Bay, Shangdong, China in two field investigations in 2003. The brines are confined in the Quaternary sediment and underwent a series of geochemical changes. The redox states of these brines were assessed qualitatively based on the measurements of Eh and redox-sensitive species such as DO, NO NO~, Mn2+, Fe2+, SO4^2- in the brines. The redox condition of the underground brine is anoxic, and the redox reactions that controlled the redox potential of brines should be Fe(Ⅲ) reduction and sulfate reduction.
文摘The past six years (2008-2014) was a prosperous time for exploration and production in the dGOM (deepwater Gulf of Mexico). Recent exploration and production activities can be divided into three major categories: drilling new wildcat wells, appraising and developing newly discovered fields and enhanced oil recovery of mature fields. Seismic imaging, complex geology, high pressure drilling, greater depth, and higher temperature are key challenges for the exploration and production of dGOM reservoirs. Complex geology includes salt-related structures and traps, reservoir compartmentalization, and the sequence stratigraphy of turbidite reservoirs. Turbidite sequence stratigraphy helps the asset team to fred the best target intervals. Sheet and channelized sandstones with good downdip aquifer support are preferred reservoir conditions. All the drilling, development and production challenges are related to high pressure, greater depth, higher temperature and lack of existing field analogs. Various IOR (improved oil recovery) methods are studied and applied in the development stage of the Wilcox fields, which have an average primary recovery factor of 10%-15%. With ideal tabular reservoir geometry and IOR methods, recovery factor of the Wilcox reservoirs can reach up to 42% of OOIP (origional oil in place) through the field life cycle.