Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological ...Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.展开更多
The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ...The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.展开更多
Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (...Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (CWUMSN) is first pre- sented. A CWUMSN can monitor the environment and locate miners in underground mines. The lowest density deployment strate- gies of cluster head nodes are discussed theoretically. We prove that the lifetime of CWUMSN with a non-uniform deployment strategy is longer than with a uniform deployment strategy. Secondly, we present the algorithm of non-uniform lowest density de- ployment of cluster head nodes. Next, we propose a dynamic choice algorithm of cluster head nodes for CWUMSN which can im- prove the adaptability of networks. Our experiments of CWUMSN with both non-uniform lowest density and uniform lowest den- sity deployments are simulated. The results show that the lifetime of CWUMSN with non-uniform lowest density deployment is almost 2.5 times as long as that of the uniform lowest density deployment. This work provides a new deployment strategy for wire- less underground mine sensor networks and then effectively promotes the application of wireless sensor networks to underground mines.展开更多
Diesel Particulate Matter (DPM) is regulated in the U.S. for both underground coal and metal/nonmetal mines. Today, many underground mines still face difficulty in compliance with DPM regulations. The DPM research c...Diesel Particulate Matter (DPM) is regulated in the U.S. for both underground coal and metal/nonmetal mines. Today, many underground mines still face difficulty in compliance with DPM regulations. The DPM research carried out in Missouri University of Science and Technology (MST) is to use computational fluid dynamics (CFD) to study the DPM distribution in commonly used face areas. The result is expected to be used for selection of DPM reduction strategies and better working practices, which can help the underground mines to meet regulation limits and improve the working environment for the miners. An experiment was conducted at MST's Experimental Mine to validate CFD simulation. DPM was collected at four locations downstream of a stationary diesel engine. The experiment data were then compared with the CFD simulation results. The comparison shows that CFD simulation can forecast the location of DPM concentration with practical accuracy (less than 0.15 m). CFD can be used to further study DPM distribution in commonly used working faces and give guidance to DPM reduction.展开更多
A mobile mechanism with four tracked-units for a missing miner search robot (MMSR) is presented, with a design based on the terrain features and atrocious environment of an underground mine. Its structure and working ...A mobile mechanism with four tracked-units for a missing miner search robot (MMSR) is presented, with a design based on the terrain features and atrocious environment of an underground mine. Its structure and working prin- ciple is discussed. The four tracked-units are controlled independently and driven cooperatively. By means of two DC motors being controlled respectively, one tracked-unit can accomplish two types of driving mode: tracked travel and in- tegral unit legged rotation (IULR), forming a track-legged compound function mechanism. Its capabilities of surmount- ing obstacles and its toppling stability in underground mines have also been analyzed. The results show that the mobile mechanism can directly surmount an obstacle of the height less than the length of one tracked-unit and get across a raceway with a span less than the length of one tracked-unit by using tracked travel and IULR. Its unstable slope angle is 51.3°. Toppling stability is determined by its structural size, moving direction and slope angle. IULR of four tracked-units can adjust the robot’s posture and then enhance toppling stability or assist in surmounting obstacles. Its track-legged compound function mechanism makes it suitable for working in underground mines.展开更多
基金Project(52204084)supported by the National Natural Science Foundation of ChinaProject(FRF-IDRY-GD22-002)supported by the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China+2 种基金Project(QNXM20220009)supported by the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,ChinaProjects(2022YFC2905600,2022YFC3004601)supported by the National Key R&D Program of ChinaProject(2023XAGG0061)supported by the Science,Technology&Innovation Project of Xiongan New Area,China。
文摘Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.
基金Project (50934006) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of ChinaProject (CX2011B119) supported by the Graduated Students’ Research and Innovation Fund Project of Hunan Province of China
文摘The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.
基金Project 20070411065 supported by the China Postdoctoral Science Foundation
文摘Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (CWUMSN) is first pre- sented. A CWUMSN can monitor the environment and locate miners in underground mines. The lowest density deployment strate- gies of cluster head nodes are discussed theoretically. We prove that the lifetime of CWUMSN with a non-uniform deployment strategy is longer than with a uniform deployment strategy. Secondly, we present the algorithm of non-uniform lowest density de- ployment of cluster head nodes. Next, we propose a dynamic choice algorithm of cluster head nodes for CWUMSN which can im- prove the adaptability of networks. Our experiments of CWUMSN with both non-uniform lowest density and uniform lowest den- sity deployments are simulated. The results show that the lifetime of CWUMSN with non-uniform lowest density deployment is almost 2.5 times as long as that of the uniform lowest density deployment. This work provides a new deployment strategy for wire- less underground mine sensor networks and then effectively promotes the application of wireless sensor networks to underground mines.
文摘Diesel Particulate Matter (DPM) is regulated in the U.S. for both underground coal and metal/nonmetal mines. Today, many underground mines still face difficulty in compliance with DPM regulations. The DPM research carried out in Missouri University of Science and Technology (MST) is to use computational fluid dynamics (CFD) to study the DPM distribution in commonly used face areas. The result is expected to be used for selection of DPM reduction strategies and better working practices, which can help the underground mines to meet regulation limits and improve the working environment for the miners. An experiment was conducted at MST's Experimental Mine to validate CFD simulation. DPM was collected at four locations downstream of a stationary diesel engine. The experiment data were then compared with the CFD simulation results. The comparison shows that CFD simulation can forecast the location of DPM concentration with practical accuracy (less than 0.15 m). CFD can be used to further study DPM distribution in commonly used working faces and give guidance to DPM reduction.
文摘A mobile mechanism with four tracked-units for a missing miner search robot (MMSR) is presented, with a design based on the terrain features and atrocious environment of an underground mine. Its structure and working prin- ciple is discussed. The four tracked-units are controlled independently and driven cooperatively. By means of two DC motors being controlled respectively, one tracked-unit can accomplish two types of driving mode: tracked travel and in- tegral unit legged rotation (IULR), forming a track-legged compound function mechanism. Its capabilities of surmount- ing obstacles and its toppling stability in underground mines have also been analyzed. The results show that the mobile mechanism can directly surmount an obstacle of the height less than the length of one tracked-unit and get across a raceway with a span less than the length of one tracked-unit by using tracked travel and IULR. Its unstable slope angle is 51.3°. Toppling stability is determined by its structural size, moving direction and slope angle. IULR of four tracked-units can adjust the robot’s posture and then enhance toppling stability or assist in surmounting obstacles. Its track-legged compound function mechanism makes it suitable for working in underground mines.