Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are a...Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are actually in a complex, interdependent relationship. To provide this, an index set of multi-target tracking decision characteristics and an analytic network process (ANP) model of the UMTLD method was -established. This method brings the index set of multi-target tracking decision into the ANP model, and the optimization multitarket tracking decision is achieved via computation of the resulting supermatrix. The rationality and robustness of decision results increase in simulations by 13% and 47% respectively with analytic hierarchy process (AHP). These results indicate that the ANP method should be the preferred method when UMTLD factors are interdependent.展开更多
In the upcoming 5 G heterogeneous networks, leveraging multiple radio access technologies(RATs) shows to be a crucial issue in achieving RAT multiplexing gain to meet the explosive traffic demand. For always best conn...In the upcoming 5 G heterogeneous networks, leveraging multiple radio access technologies(RATs) shows to be a crucial issue in achieving RAT multiplexing gain to meet the explosive traffic demand. For always best connection(ABC), users tend to activate parallel transmission across all available RATs. However from a system-wide perspective, this might not be optimal given the context of network load, interference and diverse service requirements. To intelligently determine how to use these multi-RAT access resources concurrently, this paper proposes a joint multi-RAT user association and resource allocation strategy with triple decision and integrated context awareness of users and networks. A dynamic game based ant colony algorithm(GACA) is designed to simultaneously maximize the system utility and the fairness of resource allocation. Simulation results show that it's more reasonable to make multi-RAT association decision from a system-wide viewpoint than from an individual one. Compared to max-SNR based and ABC based strategies, the proposed method alleviates network congestion and optimizes resource allocation. It obtains 39%~70% performance improvement.展开更多
A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOV...A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOVs).After the initial segmentation,the segmentation fragments are divided into two classes as "combination"(combining several fragments as an unknown word) and "segregation"(segregating to some words).So,more OOVs can be recalled.Moreover,for the characteristics of the cross-domain segmentation,context information is reasonably used to guide Chinese Word Segmentation(CWS).This method is proved to be effective through several experiments on the test data from Sighan Bakeoffs 2007 and Bakeoffs 2010.The rates of OOV recall obtain better performance and the overall segmentation performances achieve a good effect.展开更多
基金Supported by the State Key Laboratory Foundation under Grant No.9140C2304080607the Aviation Science Foundation under Grant No.05F53027
文摘Underwater multi-target tracking logic and decision (UMTLD) has difficulty resolving multi-target tracking problems for underwater vehicles. Present methods assume factors in UMTLD are uncorrelated, when these are actually in a complex, interdependent relationship. To provide this, an index set of multi-target tracking decision characteristics and an analytic network process (ANP) model of the UMTLD method was -established. This method brings the index set of multi-target tracking decision into the ANP model, and the optimization multitarket tracking decision is achieved via computation of the resulting supermatrix. The rationality and robustness of decision results increase in simulations by 13% and 47% respectively with analytic hierarchy process (AHP). These results indicate that the ANP method should be the preferred method when UMTLD factors are interdependent.
基金supported by the National Natural Science Fund of China(Grant NO.61771065,Grant NO.61571054 and Grant NO.61631005)Beijing Nova Program(NO.Z151100000315077)
文摘In the upcoming 5 G heterogeneous networks, leveraging multiple radio access technologies(RATs) shows to be a crucial issue in achieving RAT multiplexing gain to meet the explosive traffic demand. For always best connection(ABC), users tend to activate parallel transmission across all available RATs. However from a system-wide perspective, this might not be optimal given the context of network load, interference and diverse service requirements. To intelligently determine how to use these multi-RAT access resources concurrently, this paper proposes a joint multi-RAT user association and resource allocation strategy with triple decision and integrated context awareness of users and networks. A dynamic game based ant colony algorithm(GACA) is designed to simultaneously maximize the system utility and the fairness of resource allocation. Simulation results show that it's more reasonable to make multi-RAT association decision from a system-wide viewpoint than from an individual one. Compared to max-SNR based and ABC based strategies, the proposed method alleviates network congestion and optimizes resource allocation. It obtains 39%~70% performance improvement.
基金supported by the National Natural Science Foundation of China under Grants No.61173100,No.61173101the Fundamental Research Funds for the Central Universities under Grant No.DUT10RW202
文摘A new joint decoding strategy that combines the character-based and word-based conditional random field model is proposed.In this segmentation framework,fragments are used to generate candidate Out-of-Vocabularies(OOVs).After the initial segmentation,the segmentation fragments are divided into two classes as "combination"(combining several fragments as an unknown word) and "segregation"(segregating to some words).So,more OOVs can be recalled.Moreover,for the characteristics of the cross-domain segmentation,context information is reasonably used to guide Chinese Word Segmentation(CWS).This method is proved to be effective through several experiments on the test data from Sighan Bakeoffs 2007 and Bakeoffs 2010.The rates of OOV recall obtain better performance and the overall segmentation performances achieve a good effect.