According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mi...According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mixture multiphase flow, and the SIMPLE algorithm was used for solving on the basis of comprehensive consideration on the heat radia- tion and components transmission during fire. By simulating the airflow flowing state inside the tunnel during fire disaster of downward ventilation, drift ventilation, and ascensional ventilation, respectively, with regard to the actual situation of No.l, No.3, and No.5 belt roadway in Kongzhuang Coal Mine, the velocity vector distributions of pollutants under different inlet air volumes were obtained, and the damage degree and influential factors of disaster were also clear, which is helpful to control and avoid disaster during belt roadway fire.展开更多
In this study, a new control strategy for turbulent drag reduction involving ventilated cavitation is proposed. The configurational and hydrodynamic characteristics of ventilated cavities influenced by turbulent drag-...In this study, a new control strategy for turbulent drag reduction involving ventilated cavitation is proposed. The configurational and hydrodynamic characteristics of ventilated cavities influenced by turbulent drag-reducing additives were experimentally studied in water tunnel. The test model was fixed in the water tunnel by a strut in the aft-part. Aqueous solutions of CTAC/Na Sal(cetyltrimethyl ammonium chloride/sodium salicylate) with weight concentrations of 100, 200, 400 and 600 ppm(part per million), respectively, were injected into the ventilated air cavity from the edge of the cavitator with accurate control by an injection pump. The cavity configurations were recorded by a high-speed CCD camera. The hydrodynamic characteristics of the test model were measured by a six-component balance. Experimental results show that, within the presently tested cases, the lengths of cavity influenced by drag-reducing solution are smaller than normal condition(ventilated cavity) in water, but the asymmetry of the cavity is improved. The drag resisted by the test model is reduced dramatically(the maximum drag reduction can reach to 80%) and the re-entrant jet is more complex after the CTAC solution is injected into the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitating asymmetry and further drag reduction.展开更多
基金Supported by the International Science and Technology Cooperation Projects(2009DFA71840)Basic Research Business Projects of China Academy of Safety Science and Technology(2009JBKY07)
文摘According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mixture multiphase flow, and the SIMPLE algorithm was used for solving on the basis of comprehensive consideration on the heat radia- tion and components transmission during fire. By simulating the airflow flowing state inside the tunnel during fire disaster of downward ventilation, drift ventilation, and ascensional ventilation, respectively, with regard to the actual situation of No.l, No.3, and No.5 belt roadway in Kongzhuang Coal Mine, the velocity vector distributions of pollutants under different inlet air volumes were obtained, and the damage degree and influential factors of disaster were also clear, which is helpful to control and avoid disaster during belt roadway fire.
基金supported by National Natural Science Foundation of China(Grant No.51276046)
文摘In this study, a new control strategy for turbulent drag reduction involving ventilated cavitation is proposed. The configurational and hydrodynamic characteristics of ventilated cavities influenced by turbulent drag-reducing additives were experimentally studied in water tunnel. The test model was fixed in the water tunnel by a strut in the aft-part. Aqueous solutions of CTAC/Na Sal(cetyltrimethyl ammonium chloride/sodium salicylate) with weight concentrations of 100, 200, 400 and 600 ppm(part per million), respectively, were injected into the ventilated air cavity from the edge of the cavitator with accurate control by an injection pump. The cavity configurations were recorded by a high-speed CCD camera. The hydrodynamic characteristics of the test model were measured by a six-component balance. Experimental results show that, within the presently tested cases, the lengths of cavity influenced by drag-reducing solution are smaller than normal condition(ventilated cavity) in water, but the asymmetry of the cavity is improved. The drag resisted by the test model is reduced dramatically(the maximum drag reduction can reach to 80%) and the re-entrant jet is more complex after the CTAC solution is injected into the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitating asymmetry and further drag reduction.