Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure ...Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February.展开更多
The origin and quality of groundwater in the Southeastern region (belongs to Southern Plain) were identified by using isotopic techniques and geochemical analysis. Groundwater samples were collected from 7 aquifers...The origin and quality of groundwater in the Southeastern region (belongs to Southern Plain) were identified by using isotopic techniques and geochemical analysis. Groundwater samples were collected from 7 aquifers: the Holocene, upper Pleistocene, middle Pleistocene, lower Pleistocene, upper Pliocene, middle Pliocene and Miocene aquifers. The water isotopic compositions (82H and 8180) were determined to elucidate the origin and the interaction between surface water and groundwater studies. Transit time (age) of the groundwater samples was determined to explain the direction of groundwater flow. The dating techniques included 3H and ^14C isotopes measurement, followed by a correction for the initial ^14C-activity by the ^13C-composition (^13C) in TDIC (Total Dissolved Inorganic Carbon). Geochemical parameters of the groundwater samples were measured either directly in the field or in the laboratory. The results showed that the groundwater from the Holocene and upper Pleistocene aquifers was most recharged from the local meteorological and hydrological systems, including local precipitation, fiver and reservoirs. Thus, it has short transit time and its stable isotopic composition is spread around the local meteoric waterline and lines for rivers or reservoirs water. The groundwater in the deeper aquifers: middle and lower Pleistocene, and Neogene aquifers has old age up to 22.5 ka BP. Its water seems to be recharged from the areas with an altitude from 600 to 700 m higher to the Neogene deposit layer altitude. The groundwater in the SE SP (South-Eastern Southern Plain) region has a high quality. The water type is Na-Ca-Mg-HCO3 with low content of chloride and TDS (Total Dissolved Solids). Calcite/dolomite and gypsum dissolution, organic matter decomposition and sequence of red-ox reactions proceeding through different electron acceptors sediment were controlled the chemistry of the groundwater in the study region.展开更多
Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action...Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action. Accurate estimates of groundwater discharge may be valuable in improving decision support systems of hydrogeological resource exploitation. The present study performs a forecast for groundwater discharge in Aquifer?s Cervialto Mountains(southern Italy). A time series starting in 1883 was the basis for longterm predictions. An Ensemble Discharge Prediction(EDis P) was applied, and the progress of the discharge ensemble forecast was inferred with the aid of an Exponential Smoothing(ES) model initialized at different annual times. EDisP-ES hindcast model experiments were tested, and discharge plume-patterns forecast was assessed with horizon placed in the year 2044. A 46-year cycle pattern was identified by comparing simulations and observations, which is essential for the forecasting purpose. ED is P-ES performed an ensemble mean path for the coming decades that indicates a discharge regime within ± 1 standard deviation around the mean value of 4.1 m^3 s^(-1). These fluctuations are comparable with those observed in the period 1961-1980 and further back, with changepoints detectable around the years 2025 and 2035. Temporary drought conditions are expected after the year 2030.展开更多
基金supported by the National Basic Research Program of China (973Program) (Grant No. 2010CB428603)the National Natural Science Foundation of China (Grant Nos. 40805017 and 41175041)
文摘Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February.
文摘The origin and quality of groundwater in the Southeastern region (belongs to Southern Plain) were identified by using isotopic techniques and geochemical analysis. Groundwater samples were collected from 7 aquifers: the Holocene, upper Pleistocene, middle Pleistocene, lower Pleistocene, upper Pliocene, middle Pliocene and Miocene aquifers. The water isotopic compositions (82H and 8180) were determined to elucidate the origin and the interaction between surface water and groundwater studies. Transit time (age) of the groundwater samples was determined to explain the direction of groundwater flow. The dating techniques included 3H and ^14C isotopes measurement, followed by a correction for the initial ^14C-activity by the ^13C-composition (^13C) in TDIC (Total Dissolved Inorganic Carbon). Geochemical parameters of the groundwater samples were measured either directly in the field or in the laboratory. The results showed that the groundwater from the Holocene and upper Pleistocene aquifers was most recharged from the local meteorological and hydrological systems, including local precipitation, fiver and reservoirs. Thus, it has short transit time and its stable isotopic composition is spread around the local meteoric waterline and lines for rivers or reservoirs water. The groundwater in the deeper aquifers: middle and lower Pleistocene, and Neogene aquifers has old age up to 22.5 ka BP. Its water seems to be recharged from the areas with an altitude from 600 to 700 m higher to the Neogene deposit layer altitude. The groundwater in the SE SP (South-Eastern Southern Plain) region has a high quality. The water type is Na-Ca-Mg-HCO3 with low content of chloride and TDS (Total Dissolved Solids). Calcite/dolomite and gypsum dissolution, organic matter decomposition and sequence of red-ox reactions proceeding through different electron acceptors sediment were controlled the chemistry of the groundwater in the study region.
文摘Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action. Accurate estimates of groundwater discharge may be valuable in improving decision support systems of hydrogeological resource exploitation. The present study performs a forecast for groundwater discharge in Aquifer?s Cervialto Mountains(southern Italy). A time series starting in 1883 was the basis for longterm predictions. An Ensemble Discharge Prediction(EDis P) was applied, and the progress of the discharge ensemble forecast was inferred with the aid of an Exponential Smoothing(ES) model initialized at different annual times. EDisP-ES hindcast model experiments were tested, and discharge plume-patterns forecast was assessed with horizon placed in the year 2044. A 46-year cycle pattern was identified by comparing simulations and observations, which is essential for the forecasting purpose. ED is P-ES performed an ensemble mean path for the coming decades that indicates a discharge regime within ± 1 standard deviation around the mean value of 4.1 m^3 s^(-1). These fluctuations are comparable with those observed in the period 1961-1980 and further back, with changepoints detectable around the years 2025 and 2035. Temporary drought conditions are expected after the year 2030.