最小二乘逆时偏移(Least-Squares Reverse Time Migration,LSRTM)与常规偏移相比具有更高的成像分辨率、振幅保真性及均衡性等优势,是当前研究的热点之一.震源子波的估计直接影响LSRTM结果的好坏,在实际情况下考虑到震源子波的空变特性...最小二乘逆时偏移(Least-Squares Reverse Time Migration,LSRTM)与常规偏移相比具有更高的成像分辨率、振幅保真性及均衡性等优势,是当前研究的热点之一.震源子波的估计直接影响LSRTM结果的好坏,在实际情况下考虑到震源子波的空变特性,其估计十分困难.为了消除子波对LSRTM结果的影响,本文发展了基于卷积目标泛函的不依赖子波LSRTM算法.目标泛函由观测记录卷积模拟记录的参考道以及模拟记录卷积观测记录的参考道组成,由于观测子波和模拟子波在目标泛函的两项中同时存在,从而消除了子波的影响.此外,常用的基于L2范数拟合的LSRTM算法对噪声非常敏感,尤其是当地震数据中含有异常值时,常规LSRTM无法得到满意的结果.Student′s t分布相比L2范数具有更好的稳健性,本文将其推广到不依赖子波LSRTM中,提升了算法的稳健性,最后通过理论模型及实际资料试算验证了算法的有效性和对复杂模型的适应性.展开更多
文摘最小二乘逆时偏移(Least-Squares Reverse Time Migration,LSRTM)与常规偏移相比具有更高的成像分辨率、振幅保真性及均衡性等优势,是当前研究的热点之一.震源子波的估计直接影响LSRTM结果的好坏,在实际情况下考虑到震源子波的空变特性,其估计十分困难.为了消除子波对LSRTM结果的影响,本文发展了基于卷积目标泛函的不依赖子波LSRTM算法.目标泛函由观测记录卷积模拟记录的参考道以及模拟记录卷积观测记录的参考道组成,由于观测子波和模拟子波在目标泛函的两项中同时存在,从而消除了子波的影响.此外,常用的基于L2范数拟合的LSRTM算法对噪声非常敏感,尤其是当地震数据中含有异常值时,常规LSRTM无法得到满意的结果.Student′s t分布相比L2范数具有更好的稳健性,本文将其推广到不依赖子波LSRTM中,提升了算法的稳健性,最后通过理论模型及实际资料试算验证了算法的有效性和对复杂模型的适应性.