The unsteady behavior of flow driven by a jet suddenly injected into a cell is numerically studied by solving the axisymmelric two-dimensional compressible Navier-Stokes equations. The system of the calculation is a m...The unsteady behavior of flow driven by a jet suddenly injected into a cell is numerically studied by solving the axisymmelric two-dimensional compressible Navier-Stokes equations. The system of the calculation is a model of the laser ablation of a certain duration followed by a discharging process through the exit hole at the down- stream end of the cell. In the calculations, the contour of the cell is changed while other parameters such as the Mach number of the jet, its duration, and the diameter of the cell exit are fixed. Monitoring the velocity at the exit hole is used to investigate the influence of the shape on the interaction between the shock wave and the jet. As the result, it was found that the velocity peak value and its arrival time at the downstream end of the cell exit are determined by the diameter of the cell.展开更多
Pronounced aeroacoustic resonances are exhibited in the flow field where a jet emerges from an orifice or a nozzle and impinges on a solid surface. One instance where such resonances are produced is in a high speed je...Pronounced aeroacoustic resonances are exhibited in the flow field where a jet emerges from an orifice or a nozzle and impinges on a solid surface. One instance where such resonances are produced is in a high speed jet impingement, such as in the space launch vehicle systems, jet-engine exhaust impingement, and in the short take-off and vertical landing (STOVE) aircraft, etc. A highly unsteady flowfield leading to a drastic increase of noise level with very high dynamic pressure and thermal loads are noticed on nearby surfaces results dramatic lift loss, severe ground erosion and hot gas ingestion to the inlet in the jet engines. This highly unsteady behavior of the im- pinging jets is due to a feedback loop between the fluid and acoustic fields. In actual jet flow, the working gas may contain condensable gas such as steam or moist air. In these cases, the non-equilibrium condensation may occur at the region between nozzle exit and an object. The jet flow with non-equilibrium condensation may be quite different from that without condensation. Therefore, in this study, the effect of the non-equilibrium condensation of moist air on the axisymmetric under-expanded supersonic impinging jet on a vertical flat plate was investigated numerically.展开更多
基金the National Institute of Advanced Industrial Science and Technology(AIST)
文摘The unsteady behavior of flow driven by a jet suddenly injected into a cell is numerically studied by solving the axisymmelric two-dimensional compressible Navier-Stokes equations. The system of the calculation is a model of the laser ablation of a certain duration followed by a discharging process through the exit hole at the down- stream end of the cell. In the calculations, the contour of the cell is changed while other parameters such as the Mach number of the jet, its duration, and the diameter of the cell exit are fixed. Monitoring the velocity at the exit hole is used to investigate the influence of the shape on the interaction between the shock wave and the jet. As the result, it was found that the velocity peak value and its arrival time at the downstream end of the cell exit are determined by the diameter of the cell.
文摘Pronounced aeroacoustic resonances are exhibited in the flow field where a jet emerges from an orifice or a nozzle and impinges on a solid surface. One instance where such resonances are produced is in a high speed jet impingement, such as in the space launch vehicle systems, jet-engine exhaust impingement, and in the short take-off and vertical landing (STOVE) aircraft, etc. A highly unsteady flowfield leading to a drastic increase of noise level with very high dynamic pressure and thermal loads are noticed on nearby surfaces results dramatic lift loss, severe ground erosion and hot gas ingestion to the inlet in the jet engines. This highly unsteady behavior of the im- pinging jets is due to a feedback loop between the fluid and acoustic fields. In actual jet flow, the working gas may contain condensable gas such as steam or moist air. In these cases, the non-equilibrium condensation may occur at the region between nozzle exit and an object. The jet flow with non-equilibrium condensation may be quite different from that without condensation. Therefore, in this study, the effect of the non-equilibrium condensation of moist air on the axisymmetric under-expanded supersonic impinging jet on a vertical flat plate was investigated numerically.