In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow ra...In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow rate indicates an unstable discharge. The flow regions of the unstable discharge were compared with that of the stable discharge, a key transformation zone, where the voidage showed the largest difference between unstable and stable discharge, was revealed. To identify the relevance of the key transformation zone and the hopper flow stability, the voidage variation of the key transformation zone with material height reducing was studied.A sharp increase in the voidage in the key transformation zone was considered to be the standard for judging the unstable hopper flow, and the ‘Top–Bottom effect' of the hopper was defined, which indicated the hopper flow was unstable when the hopper only had the top area and the bottom area, because the voidage of particles in the top area and the bottom area were both variables.展开更多
The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large s...The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large scale co- herent structures generated as a consequence of the Kelvin-Helmholtz instability process. Measurements have been performed along a fiat plate installed within a double contoured test section, designed to produce an adverse pressure gradient typical of Ultra-High-Lift turbine blade profiles, which induces the formation of a laminar separation bubble at low Reynolds number condition. Measurements have been carried out by means of comple- mentary techniques: hot-wire (HW) anemometry, Laser Doppler Velocirnetry (LDV) and Particle Image Veloci- metry (PIV). The high accuracy 2-dimensional LDV results allow investigating reverse flow magnitude and both Reynolds normal and shear stress distributions along the separated flow region, while the high frequency response of the HW anemometer allows analyzing the amplification process of flow oscillations induced by instability mechanisms. PIV results complement the flow field analysis providing information on the generation and evolu- tion of the large scale coherent structures shed as a consequence of the separated shear layer roll-up, through in- stantaneous velocity vector maps. The simultaneous analysis of the data obtained by means of the different meas- uring techniques allows an in depth view of the instability mechanisms involved in the transition/reattachrnent processes of the separated shear layer.展开更多
Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generate...Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generated near the junction of the strake and wing,which then moved towards the wing tip at certain wavelength and speed.Analyses were made in detail on the mechanism of the generation of the cross-flow vortex,that is,the inviscid cross-flow instability which differs from that of the swept blunt wing.Cross-section topology of the cross-flow vortex is also investigated,and the wavelength of the vortex array and the characteristic frequency are given.The analyses showed that the cross-flow vortices have an influence on the pressure distribution,which can cause a 10%-20% deviation from the averaged distribution.展开更多
In some rocket nozzle flows, the existence of the transition from FSS to RSS and the occurrence of asymmetric flow are known in previous researches. As a result, the transition causes excessive side-loads that may dam...In some rocket nozzle flows, the existence of the transition from FSS to RSS and the occurrence of asymmetric flow are known in previous researches. As a result, the transition causes excessive side-loads that may damage the nozzle. Thus, it is important to investigate the method in order to control the asymmetric flow separation. In the present study, the relationship between the asymmetric separation and the rate of change of the pressure ratio with time was investigated from the point of view of the transition from FSS to RSS in the supersonic nozzle experimentally. Further, change of the flow separation by using step and cavity, and the possibility of the control was demonstrated. As a result, it was shown that the method using a cavity was effective for the control of the separation pattern.展开更多
To study the pressure distribution of the volute casing, front casing and back casing in a prototype centrifugal pump, the pressure experiments and numerical simulations are carried out at six working conditions in th...To study the pressure distribution of the volute casing, front casing and back casing in a prototype centrifugal pump, the pressure experiments and numerical simulations are carried out at six working conditions in this paper. The experimental results shows that the asymmetry of static pressure distribution on volute casing and front cavity is caused by the tongue of the volute and it may result in high radial and axial resultant force which can cause vibration and noise in the centrifugal pump. With the increasing of flow rote, the asymmetry of static pressure distribution and the magnitude of static pressure values reduce. The numerical results indicate that the pressure fluctuation near the tongue is strongest and it becomes slighter at point away from the tongue. With the increasing of flow rote, the local high=pressure region in impeller passage reduces and the flow becomes smoother accordingly, whereas the fluid speed becomes much higher which may cause further flow losses. The results predicted by numcrical simulation are in coincident with the experimental ones. It shows that the turbulence model for simulating the flow field in centrifugal pumps is feasible.展开更多
基金Supported by the State Key Development Program for Basic Research of China(2015CB251402)the National Natural Science Foundation of China(21325628,91334108)the Mole-8.5 Supercomputing System developed by Institute of Process Engineering,Chinese Academy of Sciences
文摘In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow rate indicates an unstable discharge. The flow regions of the unstable discharge were compared with that of the stable discharge, a key transformation zone, where the voidage showed the largest difference between unstable and stable discharge, was revealed. To identify the relevance of the key transformation zone and the hopper flow stability, the voidage variation of the key transformation zone with material height reducing was studied.A sharp increase in the voidage in the key transformation zone was considered to be the standard for judging the unstable hopper flow, and the ‘Top–Bottom effect' of the hopper was defined, which indicated the hopper flow was unstable when the hopper only had the top area and the bottom area, because the voidage of particles in the top area and the bottom area were both variables.
文摘The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large scale co- herent structures generated as a consequence of the Kelvin-Helmholtz instability process. Measurements have been performed along a fiat plate installed within a double contoured test section, designed to produce an adverse pressure gradient typical of Ultra-High-Lift turbine blade profiles, which induces the formation of a laminar separation bubble at low Reynolds number condition. Measurements have been carried out by means of comple- mentary techniques: hot-wire (HW) anemometry, Laser Doppler Velocirnetry (LDV) and Particle Image Veloci- metry (PIV). The high accuracy 2-dimensional LDV results allow investigating reverse flow magnitude and both Reynolds normal and shear stress distributions along the separated flow region, while the high frequency response of the HW anemometer allows analyzing the amplification process of flow oscillations induced by instability mechanisms. PIV results complement the flow field analysis providing information on the generation and evolu- tion of the large scale coherent structures shed as a consequence of the separated shear layer roll-up, through in- stantaneous velocity vector maps. The simultaneous analysis of the data obtained by means of the different meas- uring techniques allows an in depth view of the instability mechanisms involved in the transition/reattachrnent processes of the separated shear layer.
基金sponsored by the National Natural Science Foundation of China (Grant No. 91016001)
文摘Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generated near the junction of the strake and wing,which then moved towards the wing tip at certain wavelength and speed.Analyses were made in detail on the mechanism of the generation of the cross-flow vortex,that is,the inviscid cross-flow instability which differs from that of the swept blunt wing.Cross-section topology of the cross-flow vortex is also investigated,and the wavelength of the vortex array and the characteristic frequency are given.The analyses showed that the cross-flow vortices have an influence on the pressure distribution,which can cause a 10%-20% deviation from the averaged distribution.
文摘In some rocket nozzle flows, the existence of the transition from FSS to RSS and the occurrence of asymmetric flow are known in previous researches. As a result, the transition causes excessive side-loads that may damage the nozzle. Thus, it is important to investigate the method in order to control the asymmetric flow separation. In the present study, the relationship between the asymmetric separation and the rate of change of the pressure ratio with time was investigated from the point of view of the transition from FSS to RSS in the supersonic nozzle experimentally. Further, change of the flow separation by using step and cavity, and the possibility of the control was demonstrated. As a result, it was shown that the method using a cavity was effective for the control of the separation pattern.
基金supported by the Joint Project from National Natural Science Foundation of China and Liaoning Province(U1608258)
文摘To study the pressure distribution of the volute casing, front casing and back casing in a prototype centrifugal pump, the pressure experiments and numerical simulations are carried out at six working conditions in this paper. The experimental results shows that the asymmetry of static pressure distribution on volute casing and front cavity is caused by the tongue of the volute and it may result in high radial and axial resultant force which can cause vibration and noise in the centrifugal pump. With the increasing of flow rote, the asymmetry of static pressure distribution and the magnitude of static pressure values reduce. The numerical results indicate that the pressure fluctuation near the tongue is strongest and it becomes slighter at point away from the tongue. With the increasing of flow rote, the local high=pressure region in impeller passage reduces and the flow becomes smoother accordingly, whereas the fluid speed becomes much higher which may cause further flow losses. The results predicted by numcrical simulation are in coincident with the experimental ones. It shows that the turbulence model for simulating the flow field in centrifugal pumps is feasible.