Effects of the uneven circumferential blade space on static characteristics and aerodynamic noise of a small axial flow fan are studied in this work.The blade angle modulation is adopted to design a series of unequall...Effects of the uneven circumferential blade space on static characteristics and aerodynamic noise of a small axial flow fan are studied in this work.The blade angle modulation is adopted to design a series of unequally spaced fans,which have different maximum of modulation angular displacement.The steady flow is simulated by the calculations of Navier-Stokes equations coupled with RNG k-epsilon turbulence model,while the unsteady flow is computed with large eddy simulation.According to theoretical analysis,a fan with a maximum of modulation angular displacement of 6° is regarded as the optimal unequally spaced fan.The experiment of static characteristic is carried out in a standard wind tunnel and the aerodynamic noise of both fans is tested in a semi-anechoic room.Then,performances of the optimal unequally spaced fan are compared with those of the prototype fan.The results show that there is reasonable agreement between the simulation results and the experimental data.It is found that the discrete noise of the optimal unequally spaced fan is lower than that of the prototype fan at the near field monitoring point.This can be explained that the total pressure fluctuation of the optimal unequally spaced fan is much more regular than that of the prototype fan.展开更多
In this study, the flows in an enclosed annular rotor-stator system with the Reynolds number ranging from 0.75×105 to 3.75×105 and an aspect ratio of 36.5 are investigated using the LES method. Few studies h...In this study, the flows in an enclosed annular rotor-stator system with the Reynolds number ranging from 0.75×105 to 3.75×105 and an aspect ratio of 36.5 are investigated using the LES method. Few studies have explored such a rotor-stator system with this aspect ratio and the flow structure on the rotor side. The mean flow structure varies from a torsional Couette type to a Batchelor type as the Reynolds number increases. The onset of the instability in the B?dewadt layer adjacent to the stator is delayed,whereas it is promoted in the Ekman layer adjacent to the rotor. Both the layers demonstrate rich spiral structures. Turbulent spirals are observed to occur at the rotor disk side that also generates TS-wave-like(Tollmien-Schlichting) structures between adjacent spiral arms. Further, the turbulence at the stator is complex and interesting. Statistically, the turbulence is highly anisotropic near both the rotating and nonrotating disks, which is depicted by the Reynolds stresses.展开更多
基金supported by National Natural Science Foundation of China(No.51276172),ZSTUME01A04 and 2013TD18 etc
文摘Effects of the uneven circumferential blade space on static characteristics and aerodynamic noise of a small axial flow fan are studied in this work.The blade angle modulation is adopted to design a series of unequally spaced fans,which have different maximum of modulation angular displacement.The steady flow is simulated by the calculations of Navier-Stokes equations coupled with RNG k-epsilon turbulence model,while the unsteady flow is computed with large eddy simulation.According to theoretical analysis,a fan with a maximum of modulation angular displacement of 6° is regarded as the optimal unequally spaced fan.The experiment of static characteristic is carried out in a standard wind tunnel and the aerodynamic noise of both fans is tested in a semi-anechoic room.Then,performances of the optimal unequally spaced fan are compared with those of the prototype fan.The results show that there is reasonable agreement between the simulation results and the experimental data.It is found that the discrete noise of the optimal unequally spaced fan is lower than that of the prototype fan at the near field monitoring point.This can be explained that the total pressure fluctuation of the optimal unequally spaced fan is much more regular than that of the prototype fan.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272183,and 11572176)the National Key Basic Research Programme of China(Grant No.2014CB744801)supported by IHI Corporation
文摘In this study, the flows in an enclosed annular rotor-stator system with the Reynolds number ranging from 0.75×105 to 3.75×105 and an aspect ratio of 36.5 are investigated using the LES method. Few studies have explored such a rotor-stator system with this aspect ratio and the flow structure on the rotor side. The mean flow structure varies from a torsional Couette type to a Batchelor type as the Reynolds number increases. The onset of the instability in the B?dewadt layer adjacent to the stator is delayed,whereas it is promoted in the Ekman layer adjacent to the rotor. Both the layers demonstrate rich spiral structures. Turbulent spirals are observed to occur at the rotor disk side that also generates TS-wave-like(Tollmien-Schlichting) structures between adjacent spiral arms. Further, the turbulence at the stator is complex and interesting. Statistically, the turbulence is highly anisotropic near both the rotating and nonrotating disks, which is depicted by the Reynolds stresses.