By End(G) and hEnd(G) we denote the set of endomorphisms and half-strong endomorphisms of a graph G respectively. A graph G is said to be E-H-unretractive if End(G) = hEnd(G). A general characterization of an ...By End(G) and hEnd(G) we denote the set of endomorphisms and half-strong endomorphisms of a graph G respectively. A graph G is said to be E-H-unretractive if End(G) = hEnd(G). A general characterization of an E-H-unretractive graph seems to be difficult. In this paper, bipartite graphs with E-H-unretractivity are characterized explicitly.展开更多
基金the National Natural Science Foundation of China (No. 10671122).Acknowledgement The author would like to thank Professor Dr. U.Knauer for valuable advice and helpful comments on this paper.
文摘By End(G) and hEnd(G) we denote the set of endomorphisms and half-strong endomorphisms of a graph G respectively. A graph G is said to be E-H-unretractive if End(G) = hEnd(G). A general characterization of an E-H-unretractive graph seems to be difficult. In this paper, bipartite graphs with E-H-unretractivity are characterized explicitly.