目的针对Robert S Mackay等人提出的若非周期回复点生成的子转移中存在周期点,则此子转移是否包含一个不可数混乱集的问题,通过动力系统中为描述系统复杂性提供反例的工具-Sturm ian系统构造反例.方法利用符号动力系统的相关概念和Sturm...目的针对Robert S Mackay等人提出的若非周期回复点生成的子转移中存在周期点,则此子转移是否包含一个不可数混乱集的问题,通过动力系统中为描述系统复杂性提供反例的工具-Sturm ian系统构造反例.方法利用符号动力系统的相关概念和Sturm ian系统的极小非Li-Yorke混沌属性,构造了一类由非周期回复点生成含有周期点的子转移系统,并研究了其性质.结果a是符号空间中的非周期回复点,且orb(a)包含一个子转移σ的周期点,则orb(a)不包含一个不可数混乱(scrambled)集.结论若非周期回复点生成的子转移中存在周期点,则此子转移不一定包含一个不可数混乱集.展开更多
act 和 action 都可作名词用.且都表示“行为”、“行动”的意思,但其含义并不完全一样。act 表示较短时间或瞬息间完成的行为;action 强调行为的过程。它们在用法上的差别表现在以下几个方面。一、act 可用描述性的“of+名词”短语来修...act 和 action 都可作名词用.且都表示“行为”、“行动”的意思,但其含义并不完全一样。act 表示较短时间或瞬息间完成的行为;action 强调行为的过程。它们在用法上的差别表现在以下几个方面。一、act 可用描述性的“of+名词”短语来修饰,而 action 则不可。例如:1.That’s one true act of friendship.那是一个真正的友善行动。2.He performed numerous acts of kindness to those in need.他对那些处于困难中的人做出过许多仁慈之举。但 action 可带表示所属关系的“of+名词”修饰语。如:展开更多
The classical countable summation type Hahn-Schur theorem is a famous result in summation theory and measure theory. An interesting problem is whether the theorem can be generalized to non-countable summation case? In...The classical countable summation type Hahn-Schur theorem is a famous result in summation theory and measure theory. An interesting problem is whether the theorem can be generalized to non-countable summation case? In this paper, we show that the answer is true.展开更多
In this paper , we define the piecewise algebraic sets by using multivariatespline functions and discuss their irreducibility and isomorphism problem. We presenttwo equivalent conditions for the irreducibility of piec...In this paper , we define the piecewise algebraic sets by using multivariatespline functions and discuss their irreducibility and isomorphism problem. We presenttwo equivalent conditions for the irreducibility of piecewise algebraic sets, and turn theisomorphism and classifying problem of piecewise algebraic sets into the isonorphismand classifying problem of commutative algebras.展开更多
A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an u...A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic.展开更多
文摘目的针对Robert S Mackay等人提出的若非周期回复点生成的子转移中存在周期点,则此子转移是否包含一个不可数混乱集的问题,通过动力系统中为描述系统复杂性提供反例的工具-Sturm ian系统构造反例.方法利用符号动力系统的相关概念和Sturm ian系统的极小非Li-Yorke混沌属性,构造了一类由非周期回复点生成含有周期点的子转移系统,并研究了其性质.结果a是符号空间中的非周期回复点,且orb(a)包含一个子转移σ的周期点,则orb(a)不包含一个不可数混乱(scrambled)集.结论若非周期回复点生成的子转移中存在周期点,则此子转移不一定包含一个不可数混乱集.
文摘act 和 action 都可作名词用.且都表示“行为”、“行动”的意思,但其含义并不完全一样。act 表示较短时间或瞬息间完成的行为;action 强调行为的过程。它们在用法上的差别表现在以下几个方面。一、act 可用描述性的“of+名词”短语来修饰,而 action 则不可。例如:1.That’s one true act of friendship.那是一个真正的友善行动。2.He performed numerous acts of kindness to those in need.他对那些处于困难中的人做出过许多仁慈之举。但 action 可带表示所属关系的“of+名词”修饰语。如:
基金Supported by Research Fund of Kumoh National Institute of Technology(M1100)
文摘The classical countable summation type Hahn-Schur theorem is a famous result in summation theory and measure theory. An interesting problem is whether the theorem can be generalized to non-countable summation case? In this paper, we show that the answer is true.
文摘In this paper , we define the piecewise algebraic sets by using multivariatespline functions and discuss their irreducibility and isomorphism problem. We presenttwo equivalent conditions for the irreducibility of piecewise algebraic sets, and turn theisomorphism and classifying problem of piecewise algebraic sets into the isonorphismand classifying problem of commutative algebras.
基金supported by National Natural Science Foundation of China (Grant No.11071084)Natural Science Foundation of Guangdong Province (Grant No. 10451063101006332)
文摘A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic.