期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于置信度代价敏感的支持向量机不均衡数据学习 被引量:8
1
作者 赵永彬 陈硕 +1 位作者 刘明 曹鹏 《计算机工程》 CAS CSCD 北大核心 2015年第10期177-180,185,共5页
现实世界中广泛存在着很多不均衡的数据,其分类问题是机器学习领域的研究热点。为了提高不均衡数据的分类性能,提出一种基于核空间置信度的代价敏感支持向量机分类算法。通过注入类别错分代价机制,以不均衡数据评价指标作为目标函数,优... 现实世界中广泛存在着很多不均衡的数据,其分类问题是机器学习领域的研究热点。为了提高不均衡数据的分类性能,提出一种基于核空间置信度的代价敏感支持向量机分类算法。通过注入类别错分代价机制,以不均衡数据评价指标作为目标函数,优化错分代价因子,提升少数类样本的识别率。计算类中所有样本在核空间下的类别置信度,从而确定样本对决策分类贡献的重要程度,降低噪音或孤立点对支持向量机的影响。通过大量UCI数据集的实验结果表明,与其他同类算法相比,该算法能更好地提高不均衡数据的分类性能。 展开更多
关键词 机器学习 分类 不均衡数据学习 支持向量机 代价敏感学习
下载PDF
类别严重不均衡应用的在线数据流学习算法 被引量:1
2
作者 赵强利 蒋艳凰 《计算机科学》 CSCD 北大核心 2017年第6期255-259,共5页
集成式数据流挖掘是对存在概念漂移的数据流进行学习的重要方法。对于类别分布严重不均衡的应用,集成式数据流挖掘中数据块的学习方式导致样本数多的类别的分类精度高,样本数少的类别的分类精度低的问题,现有算法无法满足此类应用的需... 集成式数据流挖掘是对存在概念漂移的数据流进行学习的重要方法。对于类别分布严重不均衡的应用,集成式数据流挖掘中数据块的学习方式导致样本数多的类别的分类精度高,样本数少的类别的分类精度低的问题,现有算法无法满足此类应用的需求。针对上述问题,对基于回忆机制的集成式数据流学习算法MAE(Memorizing based Adaptive Ensemble)进行改进,提出面向类别严重不均衡应用的在线数据流学习算法UMAE(Unbalanced data Learning based on MAE)。UMAE算法为每个类别设置了一个样本滑动窗口,对于新到达的数据块,其样本依据自身的类别分别进入相应的滑动窗口,最后利用各类别滑动窗口内的样本构建用于在线学习的数据块。与5种典型的数据流挖掘算法的比较结果表明,UMAE算法在满足实时性的同时,不仅整体分类精度高,而且对于样本数很少的小类别的分类精度有大幅度提高;对于异常检测等类别分布严重不均衡的应用,UMAE算法的实用性明显优于其他算法。 展开更多
关键词 在线学习 数据流挖掘 回忆与遗忘机制 不均衡数据学习
下载PDF
基于概率分布估计的混合采样算法 被引量:6
3
作者 曹鹏 李博 +1 位作者 栗伟 赵大哲 《控制与决策》 EI CSCD 北大核心 2014年第5期815-820,共6页
在类别不均衡的数据中,类间和类内不均衡性问题都是导致分类性能下降的重要因素.为了提高不均衡数据集下分类算法的性能,提出一种基于概率分布估计的混合采样算法.该算法依据数据概率分别对每个子类进行采样以保证类内的均衡性;并扩大... 在类别不均衡的数据中,类间和类内不均衡性问题都是导致分类性能下降的重要因素.为了提高不均衡数据集下分类算法的性能,提出一种基于概率分布估计的混合采样算法.该算法依据数据概率分别对每个子类进行采样以保证类内的均衡性;并扩大少数类的潜在决策域和减少多数类的冗余信息,从而同时从全局和局部两个角度改善数据的平衡性.实验结果表明,该算法提高了传统分类算法在不均衡数据下的分类性能. 展开更多
关键词 不均衡数据学习 类内不均衡 混合采样 概率分布估计
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部