The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
We prove the existence of a positive solution to the problem-Δu=a(x)f(u), x∈Ω, u(x)=0,x∈Ω,where Ω is a bounded domain in R n with smooth boundary, a(x) is allowed to change sign.
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a cla...In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a class of quasilinear differential equations, the asymptotic expansion of solution of any orders including boundary is obtained.展开更多
Abstract: In this paper, we study the existence of a solution for fifth-order boundary value problem{u(5)(t)+f(t,u(t),u"(t)=0,0〈t〈1)/u(0)=u'(0)=u'(1)=u"(1)=u(4)(0)=0 Where f ∈ C([0,1] &...Abstract: In this paper, we study the existence of a solution for fifth-order boundary value problem{u(5)(t)+f(t,u(t),u"(t)=0,0〈t〈1)/u(0)=u'(0)=u'(1)=u"(1)=u(4)(0)=0 Where f ∈ C([0,1] × R2, R). By placing certain restrictions on the nonlinear term f, we prove the existence of at least one solution to the boundary value problem with the use of the lower and upper solution method and Schauder fixed-point theorem. The construction of lower or upper solution is also present.ed. Boundary value problems of very similar type are also considered.展开更多
The existence of positive solutions is investigated for following semipositone nonlinear third-order three-point BVP ω''(t) - λf(t,w(t)) = 0, 0 ≤ t ≤ 1, ω(0) = ω'(n) = ω'(1) = 0.
We formulate a class of functionals in space forms such that its critical points include the r-minimal hyper-surface and the minimal hyper-surface as special cases. We obtain the algebraic, differential and variationa...We formulate a class of functionals in space forms such that its critical points include the r-minimal hyper-surface and the minimal hyper-surface as special cases. We obtain the algebraic, differential and variational characteristics of the critical surfaces determined by the critical points. We prove the Simons' type nonexistence theorem which indicates that in the unit sphere, there exists no stable critical surfaces, and the Alexandrov's type existence theorem which indicates that in Euclidean space, the sphere is the only stable critical surfaces.展开更多
In this paper, the relationship between the existence of closed geodesics and the volume growth of complete noncompact Riemannian manifolds is studied. First the authors prove a diffeomorphic result of such an n-m2nif...In this paper, the relationship between the existence of closed geodesics and the volume growth of complete noncompact Riemannian manifolds is studied. First the authors prove a diffeomorphic result of such an n-m2nifold with nonnegative sectional curvature, which improves Marenich-Toponogov's theorem. As an application, a rigidity theorem is obtained for nonnegatively curved open manifold which contains a clesed geodesic. Next the authors prove a theorem about the nonexistence of closed geodesics for Riemannian manifolds with sectional curvature bounded from below by a negative constant.展开更多
In this paper, a periodic difference equation with saturable nonlinearity is considered. Using the linking theorem in combination with periodic approximations, we establish sufficient conditions on the nonexistence an...In this paper, a periodic difference equation with saturable nonlinearity is considered. Using the linking theorem in combination with periodic approximations, we establish sufficient conditions on the nonexistence and on the existence of homoclinic solutions. Our results not only solve an open problem proposed by Pankov, but also greatly improve some existing ones even for some special cases.展开更多
This paper aims to study the solvability of vector Ky Fan inequalities and the compactness of its solution sets.For vector-valued functions with the cone semicontinuity and the cone quasiconvexity in infinite dimensio...This paper aims to study the solvability of vector Ky Fan inequalities and the compactness of its solution sets.For vector-valued functions with the cone semicontinuity and the cone quasiconvexity in infinite dimensional spaces,the authors prove some existence results of the solutions and the compactness of the solution sets.Especially,some results for the vector Ky Fan inequalities on noncompact sets are built and the compactness of its solution sets are also discussed.As applications,some existence theorems of the solutions of vector variational inequalities are obtained.展开更多
This work is devoted to studying a quasilinear elliptic boundary value problem with superlinear nonlinearities in a weighted Sobolev space in a domain of R^N. Based on the Galerkin method, Brouwer's theorem and th...This work is devoted to studying a quasilinear elliptic boundary value problem with superlinear nonlinearities in a weighted Sobolev space in a domain of R^N. Based on the Galerkin method, Brouwer's theorem and the weighted compact Sobolev-type embedding theorem, a new result about the existence of solutions is revealed to the problem.展开更多
The notion of Lp-dichotomy for linear differential equations with possibly unbounded oper-ator is introduced. By help of Banach fixed point theorem sufficient conditions for the existenceof bounded solutions of nonlin...The notion of Lp-dichotomy for linear differential equations with possibly unbounded oper-ator is introduced. By help of Banach fixed point theorem sufficient conditions for the existenceof bounded solutions of nonlinear differential equations with an Lp-dichotomous linear part areobtained.展开更多
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
文摘We prove the existence of a positive solution to the problem-Δu=a(x)f(u), x∈Ω, u(x)=0,x∈Ω,where Ω is a bounded domain in R n with smooth boundary, a(x) is allowed to change sign.
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
文摘In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a class of quasilinear differential equations, the asymptotic expansion of solution of any orders including boundary is obtained.
文摘Abstract: In this paper, we study the existence of a solution for fifth-order boundary value problem{u(5)(t)+f(t,u(t),u"(t)=0,0〈t〈1)/u(0)=u'(0)=u'(1)=u"(1)=u(4)(0)=0 Where f ∈ C([0,1] × R2, R). By placing certain restrictions on the nonlinear term f, we prove the existence of at least one solution to the boundary value problem with the use of the lower and upper solution method and Schauder fixed-point theorem. The construction of lower or upper solution is also present.ed. Boundary value problems of very similar type are also considered.
基金supported by National Natural Science Foundation of China (Grant No.10871061)
文摘We formulate a class of functionals in space forms such that its critical points include the r-minimal hyper-surface and the minimal hyper-surface as special cases. We obtain the algebraic, differential and variational characteristics of the critical surfaces determined by the critical points. We prove the Simons' type nonexistence theorem which indicates that in the unit sphere, there exists no stable critical surfaces, and the Alexandrov's type existence theorem which indicates that in Euclidean space, the sphere is the only stable critical surfaces.
基金Project supported by the National Natural Science Foundation of China(Nos.10971055,11171096)the Research Fund for the Doctoral Program of Higher Education of China(No.20104208110002)the Funds for Disciplines Leaders of Wuhan(No.Z201051730002)
文摘In this paper, the relationship between the existence of closed geodesics and the volume growth of complete noncompact Riemannian manifolds is studied. First the authors prove a diffeomorphic result of such an n-m2nifold with nonnegative sectional curvature, which improves Marenich-Toponogov's theorem. As an application, a rigidity theorem is obtained for nonnegatively curved open manifold which contains a clesed geodesic. Next the authors prove a theorem about the nonexistence of closed geodesics for Riemannian manifolds with sectional curvature bounded from below by a negative constant.
基金supported partially by the Specialized Fund for the Doctoral Program of Higher Eduction (Grant No.20071078001)Key Project of National Natural Science Foundation of China (Grant No. 11031002)+1 种基金Natural Science and Engineering Research Council of Canada (NSERC)Project of Scientific Research Innovation Academic Group for the Education System of Guangzhou City
文摘In this paper, a periodic difference equation with saturable nonlinearity is considered. Using the linking theorem in combination with periodic approximations, we establish sufficient conditions on the nonexistence and on the existence of homoclinic solutions. Our results not only solve an open problem proposed by Pankov, but also greatly improve some existing ones even for some special cases.
基金supported by the Science and Technology Foundation of Guizhou Province under Grant No.20102133
文摘This paper aims to study the solvability of vector Ky Fan inequalities and the compactness of its solution sets.For vector-valued functions with the cone semicontinuity and the cone quasiconvexity in infinite dimensional spaces,the authors prove some existence results of the solutions and the compactness of the solution sets.Especially,some results for the vector Ky Fan inequalities on noncompact sets are built and the compactness of its solution sets are also discussed.As applications,some existence theorems of the solutions of vector variational inequalities are obtained.
基金supported by the National Natural Science Foundation of China(No.11171220)the Shanghai Leading Academic Discipline Project(No.XTKX2012)the Hujiang Foundation of China(No.B14005)
文摘This work is devoted to studying a quasilinear elliptic boundary value problem with superlinear nonlinearities in a weighted Sobolev space in a domain of R^N. Based on the Galerkin method, Brouwer's theorem and the weighted compact Sobolev-type embedding theorem, a new result about the existence of solutions is revealed to the problem.
文摘The notion of Lp-dichotomy for linear differential equations with possibly unbounded oper-ator is introduced. By help of Banach fixed point theorem sufficient conditions for the existenceof bounded solutions of nonlinear differential equations with an Lp-dichotomous linear part areobtained.