提出了一种基于双密度双树复小波(double-density dual-tree complex wavelet transform,DDDT-CWT)基的结构化CS图像重构算法,该算法将图像在双密度双树复小波变换下的系数呈现的树结构化特征与Co Sa MP重构算法相结合,实现了对原始图...提出了一种基于双密度双树复小波(double-density dual-tree complex wavelet transform,DDDT-CWT)基的结构化CS图像重构算法,该算法将图像在双密度双树复小波变换下的系数呈现的树结构化特征与Co Sa MP重构算法相结合,实现了对原始图像的更精确重构.实验结果表明:在相同压缩比的前提下,与传统使用DWT基且未考虑变换系数结构化特征的重构算法相比,使用DDDT-CWT基和融入结构化特征的重构算法分别可获得2.9~3.2 d B与0.2~1.2 d B的增益,综合两者后的重构算法可获得3.8~4.3 d B以上的增益.展开更多
文摘提出了一种基于双密度双树复小波(double-density dual-tree complex wavelet transform,DDDT-CWT)基的结构化CS图像重构算法,该算法将图像在双密度双树复小波变换下的系数呈现的树结构化特征与Co Sa MP重构算法相结合,实现了对原始图像的更精确重构.实验结果表明:在相同压缩比的前提下,与传统使用DWT基且未考虑变换系数结构化特征的重构算法相比,使用DDDT-CWT基和融入结构化特征的重构算法分别可获得2.9~3.2 d B与0.2~1.2 d B的增益,综合两者后的重构算法可获得3.8~4.3 d B以上的增益.